For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0095 Price: \$3

(c) 2012 <u>www.tutor-homework.com</u>: Tutoring, homework help, help with online classes.

1. chem10b 15.2-13

The equilibrium expression for K_p for the reaction below is ______.

 $2O_3(g) \Leftrightarrow 3O_2(g)$

Student Response	Correct Answer
Α.	
В.	
C.	
D.	
Ε.	

2. chem10b 15.2-18

The K_{eq} for the equilibrium below is 0.112 at 700 °C.

 $SO_2(g) + O_2(g) SO_3(g)$ What is the value of K_{eq} at this temperature for the following reaction?

 $SO_3(g) = SO_2(g) + O_2(g)$

Student Response	Correct Answer
A. 0.224	
B. 0.112	
C. 0.0125	
D. 8.93	

E. -0.112

3. chem10b 15.2-12

Which of the following expressions is the correct equilibrium-constant expression for the equilibrium between dinitrogen tetroxide and nitrogen dioxide?

 $N_2O_4(g) = 2NO_2(g)$

Student Response	Correct Answer
A. [NO ₂] ² [N ₂ O ₄]	
B. [NO ₂][N ₂ O ₄]	
С.	
D. [NO ₂] ² /[N ₂ O ₄]	
E.	

4. chem10b 15.5-3

The $K_{\scriptscriptstyle p}$ for the reaction below is 1.49 \times 10 8 at 100 °C:

 $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

In an equilibrium mixture of the three gases, $P_{CO} = P_{CI2} = 8.60 \times 10^{-4}$ atm. The partial pressure of the product, phosgene (COCl₂), is ______ atm.

Student Response	Correct Answer
A. 2.01×10^{14}	
B. 1.28×10^5	
C. 1.10×10^2	
D. 1.72×10^{11}	
E. 4.96×10^{-15}	

5. chem10b 15.2-19

The K_{eq} for the equilibrium below is 0.112 at 700 °C.

 $SO_2(g) \iff \frac{1}{2}O_2(g) + SO_3(g)$

What is the value of $K_{\mbox{\tiny eq}}$ at this temperature for the following reaction?

2SO₃ (g) <--> 2SO₂ (g) + O2 (g)

Student Response	Correct Answer
A. 2.99	
B. 4.46	
C. 79.7	
D. 8.93	
E. 17.86	

6. chem10b 15.2-20

At 1000 K, the equilibrium constant for the reaction

 $2NO(g) + Br_2(g) = 2NOBr(g)$

is $K_p = 0.013$. Calculate K_p for the reverse reaction,

 $2NOBr(g) = 2NO(g) + Br_2(g).$

Student Response	Correct Answer
A. 1.6×10^{-4}	
B. 1.1	
C. 77	
D. 0.99	
E. 0.013	

7. chem10b 15.2-38

The effect of a catalyst on an equilibrium is to ______.

	Student Response	Correct Answer
4	A. increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture	
	B. increase the equilibrium constant so that products are	

favored

C. increase the rate of the forward reaction only

D. slow the reverse reaction only

E. shift the equilibrium to the right

Score: 1/1

8. chem10b 15.2-29

The reaction below is exothermic:

 $2SO_2(g) + O_2(g) = 2SO_3(g)$

Le Ch telier's Principle predicts that _____ will result in an increase in the number of moles of SO_3 (g) in the reaction container.

Student Response	Correct Answer
A. removing some oxygen	
B. decreasing the pressure	
C. increasing the temperature	
D. increasing the pressure	
E. increasing the volume of the container	

9. chem10b 15.2-21

Consider the following equilibrium.

 $2 SO_2(g) + O_2(g)$ $2 SO_3(g)$

The equilibrium cannot be established when ______ is/are placed in a 1.0-L container.

Student Response	Correct Answer
A. 0.25 mol of SO ₂ (g) and 0.25 mol of SO ₃ (g)	
B. 0.50 mol O_2 (g) and 0.50 mol SO_3 (g)	
C. 1.0 mol SO ₃ (g)	
D. 0.25 mol SO ₂ (g) and 0.25 mol O ₂ (g)	
E. 0.75 mol SO ₂ (g)	

Of the following equilibria, only ______ will shift to the left in response to a decrease in volume.

Student Response	Correct Answer
A. $H_2(g) + Cl_2(g)$ 2 HCl (g)	
B. 4 Fe (s) + 3 O_2 (g) 2 Fe ₂ O_3 (s)	
C. $N_2(g) + 3 H_2(g) = 2 NH_3(g)$	
D. 2 SO ₃ (g) 2 SO ₂ (g) + O ₂ (g)	
E. 2HI (g) $H_2(g) + I_2(g)$	

11. chem10b 15.1-12

A sealed 1.0 L flask is charged with 0.500 mol of $I_{\rm 2}$ and 0.500 mol of $Br_{\rm 2}.$ An equilibrium reaction ensues:

 $I_2(g) + Br_2(g) = 2IBr(g)$

When the container contents achieve equilibrium, the flask contains 0.84 mol of IBr. The value of K_{eq} is _____.

Student Response	Correct Answer
A. 2.8	
B. 110	
C. 4.0	
D. 6.1	
E. 11	
Score: 1/1	

12. chem10b 15.2-17

The K_{eq} for the equilibrium below is 0.112 at 700 °C.

 $SO_2(g) + O_2(g) = SO_3(g)$ What is the value of K_{eq} at this temperature for the following reaction? $2SO_2(g) + O_2(g) = 2SO_3(g)$

Student Response	Correct Answer
A. 0.0125	
B. 0.0560	
C. 0.335	
D. 0.112	
E. 0.224	

1. chem10b 15.2-2

What role did Karl Bosch play in development of the Haber-Bosch process?

Student Response	Correct Answer
A. He discovered the reaction conditions necessary for formation of ammonia.	
B. He was the German industrialist who financed the research done by Haber.	
C. Haber was working in his lab with his instructor at the time he worked out the process.	
D. He originally isolated ammonia from camel dung and found a method for purifying it.	
E. He developed the equipment necessary for industrial production of ammonia.	

2. chem10b 15.5-5

The equilibrium constant (K_p) for the reaction below is 7.00 × 10⁻² at 22 °C:

 NH_4HS (s) $\rightarrow NH_3$ (g) + H_2S (g)

A sample of NH_4HS is placed in an evacuated container and allowed to come to equilibrium. The partial pressure of NH_3 is then increased by the addition of 0.590 atm of NH_3 . The partial pressure of H_2S at equilibrium is now ______ tm.

Student Response	Correct Answer
A. 0.855	
B. 0.101	
C. 0.691	
D. 0.119	
E. 0.265	
Score: 1/1	

Nitrosyl bromide decomposes according to the following equation.

 $2NOBr(g) = 2NO(g) + Br_2(g)$

A sample of NOBr (0.64 mol) was placed in a 1.00-L flask containing no NO or Br_2 . At equilibrium the flask contained .46 mol of NOBr. How many moles of NO and Br_2 , respectively, are in the flask at equilibrium?

Student Response	Correct Answer
A. 0.46, 0.46	
B. 0.18, 0.18	
C. 0.18, 0.090	
D. 0.18, 0.360	
E. 0.46, 0.23	

4. chem10b 15.2-11

The value of $K_{\mbox{\scriptsize eq}}$ for the following reaction is 0.25:

 $SO_2(g) + NO_2(g)$ $SO_3(g) + NO(g)$

The value of K_{eq} at the same temperature for the reaction below is ______.

 $2SO_2(g) + 2NO_2(g)$ $2SO_3(g) + 2NO(g)$

	Student Response	Correct Answer
A.	. 0.062	
В.	. 0.50	

C. 0.25			
D. 0.12			
E. 16			

Of the following equilibria, only ______ will shift to the left in response to a decrease in volume.

Student Response	Correct Answer
A. $2 SO_3 (g)$ $2 SO_2 (g) + O_2 (g)$	
B. 2HI (g) $H_2(g) + I_2(g)$	
C. $N_2(g) + 3 H_2(g) = 2 NH_3(g)$	
D. $H_2(g) + Cl_2(g)$ 2 HCl (g)	
E. 4 Fe (s) + 3 O_2 (g) 2 Fe ₂ O_3 (s)	

6. chem10b 15.1-5

A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine:

2HI (g) $H_2(g) + I_2(g)$

When the system comes to equilibrium at 425 °C, P_{HI} = 0.708 atm, and P_{H2} = P_{I2}

The value of K_p at this temperature is _____.

Student Response	Correct Answer
A. 54.3	
B. 1.30×10^{-2}	
C. K_p cannot be calculated for this gas reaction when the volume of the reaction vessel is not given.	
D. 6.80×10^{-2}	
E. 1.84×10^{-2}	

Dinitrogentetraoxide partially decomposes according to the following equilibrium:

 $N_2O_4(g) < -- > 2NO_2(g)$

A 1.00-L flask is charged with 0.0400 mol of N2O4. At equilibrium at 373 K, 0.0055 mol of N_2O_4 remains. K_{eq} for this reaction is _____.

Student Response	Correct Answer
A. 2.2×10^{-4}	
B. 0.022	
C. 0.22	
D. 0.87	
E. 13	

8. chem10b 15.2-18

The K_{eq} for the equilibrium below is 0.112 at 700 °C.

 $SO_2(g) + O_2(g) SO_3(g)$ What is the value of K_{eq} at this temperature for the following reaction?

 $SO_3(g) = SO_2(g) + O_2(g)$

Student Response	Correct Answer
A. 0.224	
B. 0.112	
C. 8.93	
D0.112	
E. 0.0125	

9. chem10b 15.2-5

Which one of the following will change the value of an equilibrium constant?

Student Response	Correct Answer
A. varying the initial concentrations of reactants	
B. changing temperature	
C. adding other substances that do not react with any of the species involved in the equilibrium	
D. varying the initial concentrations of products	
E. changing the volume of the reaction vessel	

Consider the following reaction at equilibrium:

 $2NH_{3}(g) = N_{2}(g) + 3H_{2}(g)$

Le Ch telier's principle predicts that the moles of H_2 in the reaction container will increase with _____

Student Response	Correct Answer
 A. an increase in total pressure by the addition of helium gas (V and T constant) 	
B. a decrease in the total pressure (T constant)	
C. some removal of NH_3 from the reaction vessel (V and T constant)	
D. addition of some N_2 to the reaction vessel (V and T constant)	
E. a decrease in the total volume of the reaction vessel (T constant)	
Score: 1/1	

11. chem10b 15.2-38

The effect of a catalyst on an equilibrium is to ______.

Student Response	Correct Answer
A. slow the reverse reaction only	
B. increase the equilibrium constant so that products are favored	
C. increase the rate of the forward reaction only	

- D. shift the equilibrium to the right
- E. increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture

Consider the following reaction at equilibrium:

 $2CO_2(g)$ $2CO(g) + O_2(g) \Delta H^\circ = -514 \text{ kJ}$

Le Ch telier's principle predicts that adding O_2 (g) to the reaction container will

	Student Response	Correct Answer
Α.	decrease the partial pressure of CO_2 (g) at equilibrium	
В.	increase the value of the equilibrium constant	
С.	increase the partial pressure of CO_2 (g) at equilibrium	
D.	increase the partial pressure of CO (g) at equilibrium	
Ε.	decrease the value of the equilibrium constant	

1. chem10b 15.2-27

Nitrosyl bromide decomposes according to the following equation.

 $2NOBr(g) = 2NO(g) + Br_2(g)$

A sample of NOBr (0.64 mol) was placed in a 1.00-L flask containing no NO or Br_2 . At

equilibrium the flask contained flask of NOBr. How many moles of NO and Br₂, respectively, are in the flask at equilibrium?

Student Response	Correct Answer
A. 0.46, 0.46	
B. 0.18, 0.18	

C. 0.18, 0.090	
D. 0.18, 0.360	
E. 0.46, 0.23	

A sealed 1.0 L flask is charged with 0.500 mol of $I_{\rm 2}$ and 0.500 mol of $Br_{\rm 2}.$ An equilibrium reaction ensues:

 $I_2(g) + Br_2(g) = 2IBr(g)$

When the container contents achieve equilibrium, the flask contains 0.84 mol of IBr. The value of K_{ea} is ______.

	Student Response	c	Correct Answer
Α.	2.8		
в.	6.1		
C.	11		
D.	4.0		
E.	110		

Correct Answer

3. chem10b 15.2-9

The equilibrium constant for the gas phase reaction

 $2NH_3(g) = N_2(g) + 3H_2(g)$

is K_{eq} = 230 at 300 °C. At equilibrium, _____.

Student Response

- A. reactants predominate
- B. only reactants are present
- C. roughly equal amounts of products and reactants are present
- D. only products are present
- E. products predominate

The K_{eq} for the equilibrium below is $7.52 \times 10^{\text{-2}}$ at 480 °C.

 $2CI_2(g) + 2H_2O(g)$ $4HCI(g) + O_2(g)$

What is the value of $K_{\mbox{\scriptsize eq}}$ at this temperature for the following reaction?

 $4HCl (g) + O_2 (g) = 2Cl_2 (g) + 2H_2O (g)$

Student Response	Correct Answer
A. 13.3	
B. 0.150	
C. 5.66×10^{-3}	
D. 0.0752	
E0.0752	

5. chem10b 15.2-14

The K_{eq} for the equilibrium below is 7.52 \times $10^{\text{-2}}$ at 480 °C.

 $2CI_2(g) + 2H2O(g)$ $4HCI(g) + O_2(g)$

What is the value of $K_{\mbox{\scriptsize eq}}$ at this temperature for the following reaction?

 $Cl_2(g) + H_2O(g) = 2HCl(g) + O_2(g)$

Student Response	Correct Answer
A. 5.66×10^{-3}	
B. 0.274	
C. 0.0752	
D. 0.150	
E. 0.0376	

6. chem10b 15.2-29

The reaction below is exothermic:

 $2SO_2(g) + O_2(g) = 2SO_3(g)$

Le Ch telier's Principle predicts that _____ will result in an increase in the number of moles of SO_3 (g) in the reaction container.

Student Response	Correct Answer
A. decreasing the pressure	
B. increasing the pressure	
C. removing some oxygen	
D. increasing the temperature	
E. increasing the volume of the container	

7. chem10b 15.5-4

At 900 K, the equilibrium constant (K_p) for the following reaction is 0.345.

 $2SO_2 + O_2 (g) \rightarrow 2SO_3 (g)$

At equilibrium, the partial pressure of SO_2 is 35.0 atm and that of O_2 is 15.9 atm. The partial pressure of SO_3 is _____ atm.

Student Response	Correct Answer
A. 6.20×10^{-4}	
B. 4.21×10^{-3}	
C. 82.0	
D. 40.2	
E. 192	
Score: 1/1	

8. chem10b 15.1-7

At elevated temperatures, molecular hydrogen and molecular bromine react to partially form hydrogen bromide:

 $H_{2}(g) + Br_{2}(g) = 2HBr(g)$

A mixture of 0.682 mol of H_2 and 0.440 mol of Br_2 is combined in a reaction vessel with a volume of 2.00 L. At equilibrium at 700 K, there are 0.566 mol of H_2 present. At equilibrium, there are _____ mol of Br_2 present in the reaction vessel.

Student Response	Correct Answer
A. 0.440	
B. 0.566	
C. 0.232	
D. 0.324	
E. 0.000	
Score: 1/1	

How does the reaction quotient of a reaction (Q) differ from the equilibrium constant (K_{eq}) of the same reaction?

Student Response	Correct Answer
A. Q does not depend on the concentrations or partial pressures of reaction components.	
B. Q is the same as $K_{e\alpha}$ when a reaction is at equilibrium.	
C. Q does not change with temperature.	
D. K does not depend on the concentrations or partial pressures of reaction components.	
E. K_{eq} does not change with temperature, whereas Q is temperature dependent.	
Score: 0/1	

10. chem10b 15.4-5

Le Chatelier's principle states that if a system at equilibrium is disturbed, the equilibrium will shift to minimize the disturbance.

Student Response	Value	Correct Answer

11. chem10b 15.5-5

The equilibrium constant (K_p) for the reaction below is 7.00 \times 10 $^{-2}$ at 22 °C:

 NH_4HS (s) $\rightarrow NH_3$ (g) + H_2S (g)

A sample of NH_4HS is placed in an evacuated container and allowed to come to equilibrium. The partial pressure of NH_3 is then increased by the addition of 0.590 atm of NH_3 . The partial pressure of H_2S at equilibrium is now ______ atm.

Student Response	Correct Answer
A. 0.119	
B. 0.691	
C. 0.265	
D. 0.855	
E. 0.101	

12. chem10b 15.2-31

In which of the following reactions would increasing pressure at constant temperature not

change the concentrations of reactants and products, based on Le Ch telier's principle?

Student Response	Correc
A. $2N_2(g) + O_2(g)$ $2N_2O(g)$	
B. $N_2(g) + O_2(g)$ 2NO (g)	
C. $N_2(g) + 2O_2(g)$ 2NO ₂ (g)	
D. $N_2(g) + 3H_2(g)$ 2NH ₃ (g)	
E. N ₂ O ₄ (g) 2NO ₂ (g)	

1. chem10b 15.2-34

Consider the following reaction at equilibrium:

 $2CO_2(g)$ $2CO(g) + O_2(g) \Delta H^\circ = -514 \text{ kJ}$

Le Ch telier's principle predicts that adding O₂ (g) to the reaction container will

- A. increase the partial pressure of CO (g) at equilibrium
- B. decrease the partial pressure of CO_2 (g) at equilibrium
- C. increase the partial pressure of CO_2 (g) at equilibrium
- D. decrease the value of the equilibrium constant
- E. increase the value of the equilibrium constant

Consider the following reaction at equilibrium.

 $2CO_2(g)$ $2CO(g) + O_2(g) \Delta H^\circ = -514 \text{ kJ}$

Le Ch telier's principle predicts that the equilibrium partial pressure of CO (g) can be maximized by carrying out the reaction _____.

Student Response	Correct Answer
A. at high temperature and high pressure	
B. at high temperature and low pressure	
C. at low temperature and low pressure	
D. at low temperature and high pressure	
E. in the presence of solid carbon	

3. chem10b 15.2-10

The equilibrium constant for reaction 1 is K. The equilibrium constant for reaction 2 is

(1)
$$SO_2(g) + (1/2) O_2(g) SO_3(g)$$

(2) $2SO_3(g) 2SO_2(g) + O_2(g)$

Student Response	Correct Answer
A. 1/K ²	
B. Κ ²	
С. 1/2К	
DK ²	

E. 2K

4. chem10b 15.2-8

The equilibrium constant for the gas phase reaction

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

is $K_{ea} = 4.34 \times 10^{-3}$ at 300 °C. At equilibrium, _____.

Student Response

Correct Answer

A. products predominate

B. only products are present

C. reactants predominate

D. roughly equal amounts of products and reactants are present

E. only reactants are present

5. chem10b 15.2-33

Consider the following reaction at equilibrium:

 $2NH_3(g) = N_2(g) + 3H_2(g)$

Le Ch telier's principle predicts that the moles of H_2 in the reaction container will increase with _____

	Student Response	Correct Answer
Α.	an increase in total pressure by the addition of helium gas (V and T constant)	
В.	some removal of NH_3 from the reaction vessel (V and T constant)	
C.	a decrease in the total volume of the reaction vessel (T constant)	
D.	a decrease in the total pressure (T constant)	
Ε.	addition of some N_2 to the reaction vessel (V and T constant)	

At 200 °C, the equilibrium constant (K_p) for the reaction below is 2.40 \times 10³.

 $2NO(g) < -- > N_2(g) + O_2(g)$

A closed vessel is charged with 36.1 atm of NO. At equilibrium, the partial pressure of O_2 is ______ atm.

Student Response	Correct Answer
A. 294	
B. 18.1	
C. 6.00	
D. 1.50×10^{-2}	
E. 35.7	
Score: 0/1	

7. chem10b 15.2-23

The equilibrium-constant expression for the reaction

 $Ti(s) + 2Cl_2(g)$ $TiCl_4(I)$

is given by

Student Response	Correct Answer
Α.	
В.	
C. [Cl ₂ (g)] ⁻²	
D.	
Е.	
Convert 1/1	

Score: 1/1

8. chem10b 15.1-6

Acetic acid is a weak acid that dissociates into the acetate ion and a proton in aqueous

solution:

 $HC_2H_3O_2$ (aq) $C_2H_3O_2^-$ (aq) + H⁺ (aq)

At equilibrium at 25 °C a 0.100 M solution of acetic acid has the following concentrations:

and The equilibrium constant, K_{eq} , for the ionization of acetic acid at is

Student Response	Correct Answer
A. 1.75×10^{-7}	
B. 1.79×10^{-5}	
C. 5.71×10^4	
D. 5.71×10^{6}	
E. 0.100	

9. chem10b 15.2-21

Consider the following equilibrium.

 $2 SO_2(g) + O_2(g) = 2 SO_3(g)$

The equilibrium cannot be established when ______ is/are placed in a 1.0-L container.

Student Response	Correct Answer
A. 0.50 mol O_2 (g) and 0.50 mol SO_3 (g)	
B. 0.25 mol SO ₂ (g) and 0.25 mol O ₂ (g)	
C. 0.75 mol SO ₂ (g)	
D. 0.25 mol of SO ₂ (g) and 0.25 mol of SO ₃ (g)	
E. 1.0 mol SO₃ (g)	

10. chem10b 15.1-7

At elevated temperatures, molecular hydrogen and molecular bromine react to partially form hydrogen bromide:

 $H_{2}(g) + Br_{2}(g) = 2HBr(g)$

A mixture of 0.682 mol of H_2 and 0.440 mol of Br_2 is combined in a reaction vessel with a

volume of 2.00 L. At equilibrium at 700 K, there are 0.566 mol of H_2 present. At equilibrium, there are _____ mol of Br_2 present in the reaction vessel.

Student Response	Correct Answer
A. 0.000	
B. 0.232	
C. 0.440	
D. 0.324	
E. 0.566	

11. chem10b 15.2-13

The equilibrium expression for K_p for the reaction below is ______.

$$2O_3(g) = 3O_2(g)$$

Student Response	Correct Answer
Α.	
В.	
C. $[O_2]^3 / [O_3]^2$	
D.	
Ε.	

12. chem10b 15.2-4

Which one of the following is true concerning the Haber process?

Student Response		Correct Answer
A. It is an industrial synt discovered by Karl Ha	hesis of sodium chloride that was ber.	
B. It is another way of st	tating LeChatelier's principle.	
C. It is a process for the	synthesis of elemental chlorine.	
	or shifting equilibrium positions to the nical chemical synthesis of a variety c	

E. It is a process used for the synthesis of ammonia.

1. chem10b 15.2-32

Consider the following reaction at equilibrium:

 $2NH_3$ (g) N_2 (g) + $3H_2$ (g) ΔH° = +92.4 kJ

Le Ch telier's principle predicts that adding N_2 (g) to the system at equilibrium will result in _____.

Student Response	Correct Answer
A. an increase in the value of the equilibrium constant	
B. removal of all of the $H_2(g)$	
C. a decrease in the concentration of NH_3 (g)	
D. a lower partial pressure of N_2	
E. a decrease in the concentration of H_2 (g)	

2. chem10b 15.1-13

The equilibrium constant (K_p) for the interconversion of PCl₅ and PCl₃ is 0.0121:

 $PCI_{5}(g) PCI_{3}(g) + CI_{2}(g)$

A vessel is charged with PCl_5 , giving an initial pressure of 0.123 atm. At equilibrium, the partial pressure of PCl_3 is ______ atm.

Student Response	Correct Answer
A. 0.045	
B. 0.033	
C. 0.078	
D. 0.090	
E. 0.123	

Le Chatelier's principle states that if a system at equilibrium is disturbed, the equilibrium will shift to minimize the disturbance.

4. chem10b 15.5-4

At 900 K, the equilibrium constant (K_p) for the following reaction is 0.345.

 $2SO_2 + O_2 (g) \rightarrow 2SO_3 (g)$

At equilibrium, the partial pressure of SO_2 is 35.0 atm and that of O_2 is 15.9 atm. The partial pressure of SO_3 is _____ atm.

Student Response	Correct Answer
A. 6.20×10^{-4}	
B. 82.0	
C. 4.21×10^{-3}	
D. 40.2	
E. 192	

5. chem10b 15.2-30

For the endothermic reaction

 $CaCO_3$ (s) CaO (s) + CO_2 (g)

Le Ch telier's principle predicts that _____ will result in an increase in the number of moles of CO_2 .

Student Response	Correct Answer
A. removing some of the $CaCO_3$ (s)	
B. increasing the temperature	
C. decreasing the temperature	
D. increasing the pressure	

E. adding more $CaCO_3$ (s)

6. chem10b 15.4-4

In an exothermic equilibrium reaction, increasing the reaction temperature favors the formation of reactants.

Student Response	Value	Correct Answer
False	0%	True

Score: 0/1

7. chem10b 15.2-38

The effect of a catalyst on an equilibrium is to ______.

Student Response	Correct Answer
A. increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture	
B. increase the rate of the forward reaction only	
C. shift the equilibrium to the right	
D. slow the reverse reaction only	
E. increase the equilibrium constant so that products are favored	

8. chem10b 15.4-2

The effect of a catalyst on a chemical reaction is to react with product, effectively removing it and shifting the equilibrium to the right.

Student Response	Value	Correct Answer

9. chem10b 15.1-1

The value of $K_{\mbox{\scriptsize eq}}$ for the equilibrium

 $H_2(g) + I_2(g) = 2 HI(g)$

is 794 at 25 °C. What is the value of $K_{e\alpha}$ for the equilibrium below?

 $1/2 H_2(g) + 1/2 I_2(g)$ HI (g)

Student Response	Correct Answer
A. 28	
B. 1588	
C. 397	
D. 0.035	
E. 0.0013	

10. chem10b 15.2-27

Nitrosyl bromide decomposes according to the following equation.

 $2NOBr(g) = 2NO(g) + Br_2(g)$

A sample of NOBr (0.64 mol) was placed in a 1.00-L flask containing no NO or Br₂. At

equilibrium the flask contained flask of NOBr. How many moles of NO and Br₂, respectively, are in the flask at equilibrium?

Student Response	Correct Answer
A. 0.46, 0.46	
B. 0.18, 0.18	
C. 0.18, 0.090	
D. 0.18, 0.360	
E. 0.46, 0.23	

11. chem10b 15.2-14

The K_{eq} for the equilibrium below is $7.52 \times 10^{\text{-2}}$ at 480 °C.

 $2CI_2(g) + 2H2O(g)$ $4HCI(g) + O_2(g)$

What is the value of $K_{\mbox{\scriptsize eq}}$ at this temperature for the following reaction?

 $Cl_{2}(g) + H_{2}O(g) = 2HCl(g) + O_{2}(g)$

Student Response	Correct Answer
A. 0.0752	
B. 5.66×10^{-3}	
C. 0.0376	
D. 0.274	
E. 0.150	

The equilibrium-constant expression for the reaction

 $Ti(s) + 2Cl_2(g)$ $TiCl_4(l)$

is given by

Student Response	Correct Answer
A. [Cl ₂ (g)] ⁻²	
В.	
С.	
D.	
Ε.	
Score: 1/1	

13. chem10b 15.1-9

At 200 °C, the equilibrium constant (K_p) for the reaction below is 2.40 \times $10^3.$

2NO (g) $N_2(g) + O_2(g)$

A closed vessel is charged with 36.1 atm of NO. At equilibrium, the partial pressure of O_2 is ______ atm.

Student Response

A. 6.00	
B. 18.1	
C. 35.7	
D. 294	
E. 1.50 ×	10 ⁻²
Score: 1,	/1

In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:

 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$

In an experiment, 0.35 mol of CO and 0.40 mol of H_2O were placed in a 1.00-L reaction vessel. At equilibrium, there were 0.19 mol of CO remaining. K_{eq} at the temperature of the experiment is ______.

Student Response	Correct Answer
A. 5.47	
B. 1.78	
C. 1.0	
D. 0.75	
E. 0.56	

15. chem10b 15.2-12

Which of the following expressions is the correct equilibrium-constant expression for the equilibrium between dinitrogen tetroxide and nitrogen dioxide?

 $N_2O_4(g) = 2NO_2(g)$

Student Response	Correct Answer
A. [NO ₂][N ₂ O ₄]	
В.	
C. [NO ₂] ² [N ₂ O ₄]	

```
D. [NO_2]^2 / [N_2O_4]
```

Ε.

16. chem10b 15.2-5

Which one of the following will change the value of an equilibrium constant?

	Student Response	Correct Answer
Α.	varying the initial concentrations of reactants	
в.	changing temperature	
C.	adding other substances that do not react with any of the species involved in the equilibrium	
D.	varying the initial concentrations of products	
E.	changing the volume of the reaction vessel	

17. chem10b 15.1-4

Consider the following chemical reaction:

 $H_2(g) + I_2(g) = 2HI(g)$

At equilibrium in a particular experiment, the concentrations of $H_2,\,I_2,$ and HI were

and respectively. The value of K_{eq} for this reaction is _____.

Student Response	Correct Answer
A. 6.1	
B. 111	
C. 23	
D. 9.0×10^{-3}	
E. 61	

Dinitrogentetraoxide partially decomposes according to the following equilibrium:

 $N_2O_4(g) = 2NO_2(g)$

A 1.00-L flask is charged with .0400 mol of N2O4. At equilibrium at 373 K, 0.0055 mol of N_2O_4 remains. K_{eq} for this reaction is _____.

Student Response	Correct Answer
A. 2.2×10^{-4}	
B. 0.022	
C. 0.22	
D. 0.87	
E. 13	
Score: 1/1	

19. chem10b 15.5-5

The equilibrium constant (K_p) for the reaction below is 7.00 \times 10⁻² at 22 °C:

 $NH_4HS (s) \rightarrow NH_3 (g) + H_2S (g)$

A sample of NH_4HS is placed in an evacuated container and allowed to come to equilibrium. The partial pressure of NH_3 is then increased by the addition of 0.590 atm of NH_3 . The partial pressure of H_2S at equilibrium is now ______ atm.

Student Response	Correct Answer
A. 0.691	
B. 0.119	
C. 0.855	
D. 0.265	
E. 0.101	

20. chem10b 15.2-35

Consider the following reaction at equilibrium:

 $2CO_2(g) < -- > 2CO(g) + O_2(g) \Delta H^\circ = -514 \text{ kJ}$

Le Chatelier's principle predicts that an increase in temperature will ______.

Student Response	Correct Answer
A. decrease the partial pressure of CO_2 (g)	
B. decrease the value of the equilibrium constant	
C. increase the partial pressure of O_2 (g)	
D. increase the value of the equilibrium constant	
E. increase the partial pressure of CO	