For answers, send email to: admin@tutor-homework.com.

Include file name: Chemistry_Worksheet_0099

Price: \$5

(c) 2012 <u>www.tutor-homework.com</u>: Tutoring, homework help, help with online classes.

1. chem10b 19.5-1

A common name for methanol (CH₃OH) is wood alcohol. The normal boiling point of methanol

is and the molar enthalpy of vaporization if 71.8 kJ/mol. The value of S when 2.15 mol

of vaporizes at 64.7 °C is

Student Response	Correct Answer
A. 457	
B. 2.39×10^3	
C. 5.21×10^7	
D. 0.457	
E. 2.39	

2. chem10b 19.2-15

Which reaction produces a decrease in the entropy of the system?

Student Response	Correct Answer
A. $2C(s) + O_2(g) \rightarrow 2CO(g)$	
B. $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$	
C. $CO_2(s) \rightarrow CO_2(g)$	
D. $H_2O(I) \rightarrow H_2O(g)$	
E. $CaCO_3$ (s) \rightarrow CaO (s) + CO_2 (g)	

3. chem10b 19.1-9

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}f$ (kJ/mol) $\Delta G^{\circ}f$ (kJ/mol) S (J/K-mol)

Carbon

C (s, diamond) 1.88 2.84 2.43

C (s, graphite) 0 0 5.69

 C_2H_2 (g) 226.7 209.2 200.8

C₂H₄ (g) 52.30 68.11 219.4

 C_2H_4 (g) -84.68 -32.89 229.5

CO (g) -110.5 -137.2 197.9

CO₂ (g) -393.5 -394.4 213.6

Hydrogen

H₂(g) 0 0 130.58

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

The combustion of ethane in the presence of excess oxygen yields carbon dioxide and water:

$$2C_2H6 (g) + 7O_2 (g) \rightarrow 4CO_2 (g) + 6H_2O (l)$$

The value of ΔS° for this reaction is ______ J/K.

Student Response	Correct Answer
A718.0	
B. +151.0	
C. +718.0	
D151.0	
E620.9	

4. chem10b 19.2-36

If ΔG° for a reaction is greater tha \square zero, then $_$

Student Response	Correct Answer
A. K > 1	
B. K = 1	
C. K < 1	
D. K = 0	
E. More information is needed.	

The second law of thermodynamics states that $___$

Student Response

Correct Answer

- A. $\Delta S = q_{rev}/T$ at constant temperature
- B. $\Delta E = q + w$
- C. for any spontaneous process, the entropy of the universe increases
- D. the entropy of a pure crystalline substance is zero at absolute ze□o
- E. $\Delta H^{\circ}_{rxn} = \Sigma n\Delta H^{\circ}_{f}$ (products) Σ m ΔH°_{f} (reactants)

6. chem10b 19.2-30

Given the following table of thermodynamic data,

complete the following sentence. The vaporization of PCl₃ (I) is ______.

Student Response

Correct Answer

- A. spontaneous at low temperature and nonspontaneous at high temperature
- B. nonspontaneous at low temperature and spontaneous at high temperature
- C. nonspontaneous at all temperatures
- D. spontaneous at all temperatures
- E. not enough information given to draw a conclusion

Score: 1/1

7. chem10b 19.2-12

 ΔS is positive for the reaction _____.

Student Response

Correct Answer

- A. $CO_2(g) \rightarrow CO_2(s)$
- B. $BaF_2(s) \rightarrow Ba^{2+}(aq) + 2F^{-}(aq)$

C.
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

D.
$$2Hg(I) + O_2(g) \rightarrow 2HgO(s)$$

E.
$$2NO_2(g) \rightarrow N_2O_4(g)$$

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

 $O_2(q) 0 0 205.0$

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔS° for the formation of POCl₃ from its constituent elements,

$$P_{2}(g) + O_{2}(g) + 3CI_{2}(g) \rightarrow 2POCI_{3}(g)$$

Student Response	Correct Answer
A321	
B442	
C771	
D. +771	

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔH° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide,

2S (s, rhombic) +
$$3O_2(g) \rightarrow 2SO_3(g)$$

Student Response	Correct Answer
A. +105.1	
B. +790.4	
C395.2	
D790.4	
E. +395.2	

Consider the reaction:

$$Ag^+$$
 (aq) + Cl^- (aq) \rightarrow $AgCl$ (s)

Given the following table of thermodynamic data,

determine the temperature (in °C) above which the reaction is nonspontaneous under standard conditions.

Student Response	Correct Answer
A. 1641	
B. 133.0	
C. 1235	
D. 150.5	
E. 432.8	

11. chem10b 19.1-12

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6 Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur S (s, rhombic) 0 0 31.88 SO₂(g) -269.9 -300.4 248.5 SO₃(g) -395.2 -370.4 256.2

The value of ΔS° for the oxidation of solid elemental sulfur to gaseous sulfur dioxide,

$$S \ (s, \ rhombic) \, + \, O_2(g) \rightarrow SO_2(g)$$

Student Response	Correct Answer
A. +485.4	
B. +11.6	
C248.5	
D. +248.5	
E11.6	

12. chem10b 19.2-20

Which one of the following correctly indicates the relationship between the entropy of a system and the number of different arrangements, W, in the system?

Student Response	Correct Answer
A. $S = Wk$	
B. $S = k \ln W$	
C. S =	
D. $S = kW$	
E. S =	

13. chem10b 19.2-22

Of the following, the entropy of gaseous ______ is the largest at 25 °C and 1 atm.

Student Response

Correct Answer

	A. C ₂ H ₄
	B. H ₂
	C. C ₂ H ₆
	D. CH ₄
	E. C ₂ H ₂

Which one of the following is always positive when a spontaneous process occurs?

	Student Response	Correct Answer
A.	$\Delta S_{universe}$	
В.	$\Delta H_{surroundings}$	
C.	$\Delta H_{universe}$	
D.	ΔS_{system}	
E.	$\Delta S_{ ext{surroundings}}$	

15. chem10b 19.2-18

 ΔS is negative for the reaction _____.

	Student Response	Correct Answer
Α.	$2SO_{2}(g) + O_{2}(g) \rightarrow 2SO_{3}(g)$	
В.	$NH_4CI (s) \rightarrow NH_3 (g) + HCI (g)$	
C.	$H_2O(I) \rightarrow H_2O(g)$	
D.	$PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$	
E.	$2C(s) + O_2(g) \rightarrow 2CO_2(g)$	

16. chem10b 19.2-5

A reversible process is one that _____.

- A. must be carried out at high temperature
- B. is spontaneous in both directions
- C. happens spontaneously
- D. must be carried out at low temperature
- E. can be reversed with no net change in either system or surroundings

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}f$ (kJ/mol) $\Delta G^{\circ}f$ (kJ/mol) S (J/K-mol)

Carbon

C (s, diamond) 1.88 2.84 2.43

C (s, graphite) 0 0 5.69

C₂H₂ (g) 226.7 209.2 200.8

C₂H₄ (g) 52.30 68.11 219.4

 C_2H_4 (g) -84.68 -32.89 229.5

CO (g) -110.5 -137.2 197.9

CO₂ (g) -393.5 -394.4 213.6

Hydrogen

H₂(g) 0 0 130.58

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

The value of ΔS° for the oxidation of carbon to carbon monoxide,

2C (s, graphite) +
$$O_2$$
 (g) \rightarrow 2CO (g)

is ______ J/K. Carbon monoxide is produced in the combustion of carbon with limited oxygen.

Student Response	Correct Answer
A. +408.6	
B408.6	
C. +395.8	
D. +179.4	
E12.8	

The value of $\,\,$ G° at 100.0 °C for the formation of calcium chloride from its constituent elements:

$$Ca(s) + Cl_2(g) \rightarrow CaCl_2(s)$$

is _____ kJ/mol. At 25.0 $^{\circ}$ C for this reaction, H $^{\circ}$ is -795.8 kJ/mol, G $^{\circ}$ is -748.1

kJ/mol, and is

	Student Response	Correct Answer
A.	-779.8	
В.	1.52×10^4	
C.	-736.2	
D.	-855.4	
E.	5.88×10^4	

Score: 1/1

19. chem10b 19.2-3

Of the following, only ______ is not a state function.

Student Response	Correct Answer
A. q	
В. Т	
C. H	
D. E	
E. S	

20. chem10b 19.2-27

For the reaction

$$C_2H_6(g) \to C_2H_4(g) + H_2(g)$$

 ΔH° is +137 kJ/mol and ΔS° is +120 J/K \cdot mol. This reaction is ______.

Student Response	Correct Answer
A. spontaneous at all temperatures	
B. nonspontaneous at all temperatures	
C. spontaneous only at high temperature	
D. spontaneous only at low temperature	

 ΔS is positive for the reaction _____.

Student Response	Correct Answer
A. $H_2O(I) \rightarrow H_2O(s)$	
B. $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$	
C. CaO (s) + CO_2 (g) \rightarrow CaCO ₃ (s)	
D. Ag^+ (aq) + Cl^- (aq) \rightarrow $AgCl$ (s)	
E. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	

2. chem10b 19.5-2

The value of $\,\,$ G° at 100.0 °C for the oxidation of solid elemental sulfur to gaseous sulfur dioxide,

$$S (s,rhombic) + O_2 (g) \rightarrow SO_2 (g)$$

is _____ kJ/mol. At 25.0 $^{\circ}$ C for this reaction, H $^{\circ}$ is -269.9 kJ/mol, G $^{\circ}$ is and is

Student Response	Correct Answer
A4,598	
B274.2	
C271.1	

D. -1,430

E. -265.6

3. chem10b 19.2-1

The first law of thermodynamics can be given as ______.

Student Response

Correct Answer

A. the entropy of a pure crystalline substance at absolute zero is zero

B. $\Delta E = q + w$

C. $\Delta S = q_{rev}/T$ at constant temperature

D.

$$\Delta H^{o}_{rxn} = -$$

E. for any spontaneous process, the entropy of the universe increases

4. chem10b 19.4-2

The vaporization of a substance at its boiling point is an isothermal process

Student Response	Value	Correct Answer

5. chem10b 19.1-8

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}f$ (kJ/mol) $\Delta G^{\circ}f$ (kJ/mol) S (J/K-mol)

Carbon

C (s, diamond) 1.88 2.84 2.43

C (s, graphite) 0 0 5.69

C₂H₂ (g) 226.7 209.2 200.8

C₂H₄ (g) 52.30 68.11 219.4

 C_2H_4 (g) -84.68 -32.89 229.5

CO (g) -110.5 -137.2 197.9

CO₂ (g) -393.5 -394.4 213.6

Hydrogen H₂(g) 0 0 130.58

Oxygen O₂ (g) 0 0 205.0 H₂O (l) -285.83 -237.13 69.91

The combustion of ethene in the presence of excess oxygen yields carbon dioxide and water:

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(I)$$

The value of ΔS° for this reaction is ______ J/K.

Student Response	Correct Answer
A. +347.6	
B347.6	
C140.9	
D. +140.9	
E267.4	

6. chem10b 19.2-23

The standard Gibbs free energy of formation of ______ is zero.

- (a) H_2O (I)
- (b) O (g)
- (c) H_2 (g)

Student Response	Correct Answer
A. (a) only	
B. (b) only	
C. (c) only	
D. (b) and (c)	
E. (a), (b), and (c)	

7. chem10b 19.1-33

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{o}_{f}(kJ/mol) \Delta G^{o}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔG° at 25 °C for the decomposition of gaseous sulfur trioxide to solid elemental sulfur and gaseous oxygen,

$$2SO_3(g) \rightarrow 2S(s, rhombic) + 3O_2(g)$$

is _____ kJ/mol.

Student Response	Correct Answer
A370.4	
B740.8	
C. +740.8	
D. +185.2	
E. +370.4	

8. chem10b 19.1-13

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium
Ca (s) 0 0 41.4
CaCl₂ (s) -795.8 -748.1 104.6
Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96 Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0 H₂O (l) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1 PCl₃ (g) -288.1 -269.6 311.7 POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88 SO₂(g) -269.9 -300.4 248.5 SO₃(g) -395.2 -370.4 256.2

The value of ΔS° for the decomposition of gaseous sulfur trioxide to solid elemental sulfur and gaseous oxygen,

$$2SO_3(g) \rightarrow 2S(s, rhombic) + 3O_2(g)$$

is _____ J/K.

Student Response	Correct Answer
A493.1	
B19.3	
C. +166.4	
D. +493.1	
E. +19.3	

9. chem10b 19.2-29

For a reaction to be spontaneous under standard conditions at all temperatures, the signs of ΔH° and ΔS° must be ______ and _____, respectively.

Student Response	Correct Answer
A. +, +	
B. +, -	

C, +	
D, -	
E. +, 0	

A system that doesn't exchange matter or energy with its surroundings is called an _____ system.

Student Response	Correct Answer
A. adiabatic	
B. isolated	
C. isothermal	
D. isotonic	
E. isobaric	

Score: 1/1

11. chem10b 19.2-3

Of the following, only ______ is not a state function.

Student Response	Correct Answer
А. Т	
B. S	
C. q	
D. H	
E. E	

12. chem10b 19.1-7

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}f$ (kJ/mol) $\Delta G^{\circ}f$ (kJ/mol) S (J/K-mol)

Carbon

C (s, diamond) 1.88 2.84 2.43

C (s, graphite) 0 0 5.69 C_2H_2 (g) 226.7 209.2 200.8 C_2H_4 (g) 52.30 68.11 219.4 C_2H_4 (g) -84.68 -32.89 229.5 CO (g) -110.5 -137.2 197.9 CO_2 (g) -393.5 -394.4 213.6

Hydrogen $H_2(g) 0 0 130.58$

Oxygen O₂ (g) 0 0 205.0 H₂O (l) -285.83 -237.13 69.91

The value of ΔS° for the oxidation of carbon to carbon dioxide,

C (s, graphite) + O_2 (g) \rightarrow CO_2 (g)

is ______ J/K. The combustion of carbon, as in charcoal briquettes, in the presence of abundant oxygen produces carbon dioxide.

Student Response	Correct Answer
A2.9	
В205.0	
C. +424.3	
D. +2.9	
E. +205.0	

1. chem10b 19.1-30

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium Ca (s) 0 0 41.4 CaCl₂ (s) -795.8 -748.1 104.6 Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine Cl₂ (g) 0 0 222.96 Cl- (aq) -167.2 -131.2 56.5 Oxygen O₂ (g) 0 0 205.0 H₂O (l) -285.83 -237.13 69.91

Phosphorus P₂ (g) 144.3 103.7 218.1 PCl₃ (g) -288.1 -269.6 311.7 POCl₃ (g) -542.2 -502.5 325

Sulfur S (s, rhombic) 0 0 31.88 $SO_2(g)$ -269.9 -300.4 248.5 $SO_3(g)$ -395.2 -370.4 256.2

The value of ΔH^{o} for the decomposition of calcium chloride into its constituent elements,

$$CaCl_2(s) \rightarrow Ca(s) + Cl_2(g)$$

is _____ kJ/mol.

Student Response	Correct Answer
A. +397.9	
B0.00	
C397.9	
D795.8	
E. +795.8	

2. chem10b 19.1-40

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4 CaCl₂ (s) -795.8 -748.1 104.6 Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96 Cl- (aq) -167.2 -131.2 56.5

Oxygen O₂ (g) 0 0 205.0 H₂O (l) -285.83 -237.13 69.91 Phosphorus P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7 POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88 SO₂(g) -269.9 -300.4 248.5 SO₃(g) -395.2 -370.4 256.2

The value of ΔG° at 25 °C for the decomposition of calcium chloride into its constituent elements,

$$CaCl_2(s) \rightarrow Ca(s) + Cl_2(g)$$

is _____ kJ/mol.

Student Response	Correct Answer
A748.1	
B. +795.8	
C. +763.7	
D. +748.1	
E795.8	

3. chem10b 19.1-34

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔG° at 25 °C for the decomposition of gaseous sulfur dioxide to solid elemental sulfur and gaseous oxygen,

$$SO_2(g) \rightarrow S(s, rhombic) + O_2(g)$$

is _____ kJ/mol.

Student Response	Correct Answer
A. +395.2	
B. +269.9	
C269.9	
D300.4	
E. +300.4	

4. chem10b 19.2-34

Consider the reaction:

FeO (s) + Fe (s) +
$$O_2$$
 (g) \rightarrow Fe $_2O_3$ (s)

Given the following table of thermodynamic data,

determine the temperature (in °C) above which the reaction is nonspontaneous.

Student Response	Correct Answer
A. 756.3	
B. This reaction is spontaneous at all temperatures.	
C. 1235	
D. 2439	
E. 618.1	

Score: 1/1

Given the following table of thermodynamic data,

complete the following sentence. The vaporization of PCl₃ (I) is ______.

Student Response	Correct Answer
A. spontaneous at low temperature and nonspontaneous at high temperature	
B. nonspontaneous at low temperature and spontaneous at high temperature	
C. nonspontaneous at all temperatures	
D. spontaneous at all temperatures	
E. not enough information given to draw a conclusion	

6. chem10b 19.2-9

The entropy of the universe is ______.

Student Response	Correct Answer
A. continually decreasing	
B. continually increasing	
C. zero	
D. the same as the energy, E	
E. constant	

7. chem10b 19.2-20

Which one of the following correctly indicates the relationship between the entropy of a system and the number of different arrangements, W, in the system?

Student Response	Correct Answer
Α.	
S =	
B. $S = kW$	

C. S = Wk			
D.			
S =			
E. $S = k \ln W$			

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

 $O_2(g) 0 0 205.0$

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔH° for the oxidation of solid elemental sulfur to gaseous sulfur dioxide,

$$S (s, rhombic) + O_2 (g) \rightarrow SO_2 (g)$$

Student Response	Correct Answer
A. +0.00	
B11.6	
C. +269.9	

D. +11.6

E. -269.9

9. chem10b 19.2-19

Consider a pure crystalline solid that is heated from absolute zero to a temperature above the boiling point of the liquid. Which of the following processes produces the greatest increase in the entropy of the substance?

Student Response	Correct Answer
A. vaporizing the liquid	
B. heating the liquid	
C. melting the solid	
D. heating the solid	
E. heating the gas	

Score: 1/1

10. chem10b 19.1-44

The equilibrium constant for a reaction is 0.48 at 25 °C. What is the value of ΔG° (kJ/mol) at this temperature?

Student Response	Correct Answer
A. 1.5×10^2	
B4.2	
C. 4.2	
D. 1.8	
E. More information is needed.	

11. chem10b 19.1-47

Consider the reaction:

FeO (s) + Fe (s) +
$$O_2$$
 (g) \rightarrow Fe₂ O_3 (s)

Given the following table of thermodynamic data at 298 °K:

The value K for the reaction at 25 °C is ______.

Student Response	Correct Answer
A. 8.1×10^{19}	
В. 370	
C. 5.9×10^4	
D. 3.8 × 10 ⁻¹⁴	
E. 7.1×10^{85}	

12. chem10b 19.2-25

The equilibrium position corresponds to which letter on the graph of G vs f (course of reaction) below?

Student Response	Correct Answer
A. A	
В. В	
c. c	
D. D	
E. E	

1. chem10b 19.1-33

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium Ca (s) 0 0 41.4 CaCl₂ (s) -795.8 -748.1 104.6 Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

 $SO_2(g)$ -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔG° at 25 °C for the decomposition of gaseous sulfur trioxide to solid elemental sulfur and gaseous oxygen,

$$2SO_3(g) \rightarrow 2S(s, rhombic) + 3O_2(g)$$

Student Response	Correct Answer
A. +370.4	
B370.4	
C. +740.8	
D. +185.2	
E740.8	

Score: 1/1

2. chem10b 19.5-7

In the Haber process, ammonia is synthesized from nitrogen and hydrogen:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

G° at 298 °K for this reaction is -33.3 kJ/mol. The value of $\,$ G at 298 K for a reaction mixture that consists of 1.9 atm $\,$ N $_2$, 1.6 atm $\,$ H $_2$, and 0.65 atm $\,$ NH $_3$ is ______.

Student Response	Correct Answer
A. -7.25×10^3	

B. -3.86×10^3		
C1.8		
D40.5		
F104.5		

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{o}_{f}(kJ/mol) \Delta G^{o}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

 $O_2(g) 0 0 205.0$

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔS° for the formation of phosphorous trichloride from its constituent elements,

$$P_2(g) + 3Cl_2(g) \rightarrow 2PCl_3(g)$$

Student Response	Correct Answer
A. +129.4	
В263.7	
C129.4	

D. -311.7

E. +311.7

4. chem10b 19.1-39

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔG° at 25 °C for the formation of calcium chloride from its constituent elements,

$$Ca(s) + Cl_2(g) \rightarrow CaCl_2(s)$$

Student Response	Correct Answer
A. +795.8	
B. +748.1	
C748.1	
D795.8	

E. +763.7

5. chem10b 19.1-2

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}f$ (kJ/mol) $\Delta G^{\circ}f$ (kJ/mol) S (J/K-mol)

Carbon

C (s, diamond) 1.88 2.84 2.43 C (s, graphite) 0 0 5.69 C₂H₂ (g) 226.7 209.2 200.8

C₂H₄ (g) 52.30 68.11 219.4

C₂H₄ (g) -84.68 -32.89 229.5 CO (g) -110.5 -137.2 197.9

CO₂ (g) -393.5 -394.4 213.6

Hydrogen

H₂(g) 0 0 130.58

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

The combustion of acetylene in the presence of excess oxygen yields carbon dioxide and water:

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(I)$$

The value of ΔS° for this reaction is ______ J/K.

Student Response	Correct Answer
A. +432.4	
B122.3	
C. +122.3	
D432.4	
E. +689.3	

6. chem10b 19.2-31

Given the following table of thermodynamic data,

complete the following sentence. The vaporization of TiCl₄ is ______.

Student Response

Correct Answer

- A. spontaneous at low temperature and nonspontaneous at high temperature
- B. spontaneous at all temperatures
- C. nonspontaneous at low temperature and spontaneous at high temperature
- D. nonspontaneous at all temperatures
- E. not enough information given to draw a conclusion

7. chem10b 19.1-15

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

 Ca_2^+ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔS° for the formation of POCl₃ from its constituent elements,

$$P_2(g) + O_2(g) + 3Cl_2(g) \rightarrow 2POCl_3(g)$$

Student Response	Correct Answer
A771	
B442	
C. +771	
D. +321	
E321	

Which reaction produces an increase in the entropy of the system?

Student Response	Correct Answer
A. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$	
B. $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$	
C. Ag^+ (aq) + Cl^- (aq) \rightarrow $AgCl$ (s)	
D. $H_2O(I) \rightarrow H_2O(s)$	
E. $CO_2(s) \rightarrow CO_2(g)$	

9. chem10b 19.4-5

The more negative ΔG is for a given reaction, the larger the value of the corresponding equilibrium constant, K.

Student Response	Value	Correct Answer

10. chem10b 19.1-47

Consider the reaction:

FeO (s) + Fe (s) +
$$O_2$$
 (g) \rightarrow Fe₂ O_3 (s)

Given the following table of thermodynamic data at 298 °K:

The value K for the reaction at 25 °C is _____.

Student Response	Correct Answer
A. 3.8×10^{-14}	
B. 5.9×10^4	
C. 370	
D. 8.1×10^{19}	
E. 7.1 × 10 ⁸⁵	

11. chem10b 19.2-19

Consider a pure crystalline solid that is heated from absolute zero to a temperature above the boiling point of the liquid. Which of the following processes produces the greatest increase in the entropy of the substance?

Student Response	Correct Answer
A. heating the liquid	
B. melting the solid	
C. vaporizing the liquid	
D. heating the solid	
E. heating the gas	

12. chem10b 19.5-4

The value of $\,\,$ G° at 100.0 °C for the formation of calcium chloride from its constituent elements:

$$Ca\ (s)\ +\ Cl_2\ (g) \rightarrow CaCl_2\ (s)$$

kJ/mol, and is

Student Response	Correct Answer
A855.4	
B779.8	
C. 5.88×10^4	
D736.2	
E. 1.52×10^4	

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{o}_{f}(kJ/mol) \Delta G^{o}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4 CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔS° for the formation of phosphorous trichloride from its constituent elements,

$$P_2(g) + 3Cl_2(g) \rightarrow 2PCl_3(g)$$

is _____ J/K.

Student Response	Correct Answer
A. +311.7	
B. +129.4	
C311.7	
D129.4	
E263.7	

With thermodynamics, one cannot determine ______.

Student Response	Correct Answer	
A. the direction of a spontaneous reaction		
B. the speed of a reaction		
C. the value of the equilibrium constant		
D. the temperature at which a reaction will be spontaneous		
E. the extent of a reaction		

3. chem10b 19.1-29

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔH^{o} for the formation of calcium chloride from its constituent elements,

 $Ca(s) + Cl_2(g) \rightarrow CaCl_2(s)$

is _____ kJ/mol.

Student Response	Correct Answer
A. +397.9	
B. +0.00	
C. +795.8	
D397.9	
E795.8	

4. chem10b 19.1-25

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5 SO₃(g) -395.2 -370.4 256.2

The value of ΔH° for the formation of POCl₃ from its constituent elements,

$$P_{2}\left(g\right)+O_{2}\left(g\right)+3CI_{2}\left(g\right)\rightarrow2POCI_{3}\left(g\right)$$

is _____ kJ/mol.

Student Response	Correct Answer
A. +1228.7	
В1228.7	
C. +686.5	
D397.7	
E686.5	

5. chem10b 19.1-21

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{o}_{f}(kJ/mol) \Delta G^{o}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

 Ca_2^+ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔH° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide,

2S (s, rhombic) +
$$3O_2(g) \rightarrow 2SO_3(g)$$

Student Response	Correct Answer
A395.2	
B. +395.2	
C. +105.1	
D790.4	
E. +790.4	

6. chem10b 19.1-22

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔH° for the decomposition of gaseous sulfur trioxide to its component elements,

$$2SO_3(g) \rightarrow 2S(s, rhombic) + 3O_2(g)$$

is _____ kJ/mol.

Student Response	Correct Answer
A395.2	
B. +790.4	
C. +105.1	
D. +395.2	
E790.4	

7. chem10b 19.1-42

Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance $\Delta H^{\circ}_{f}(kJ/mol) \Delta G^{\circ}_{f}(kJ/mol) S (J/K-mol)$

Calcium

Ca (s) 0 0 41.4

CaCl₂ (s) -795.8 -748.1 104.6

Ca₂⁺ (aq) 226.7 209.2 200.8

Chlorine

Cl₂ (g) 0 0 222.96

Cl- (aq) -167.2 -131.2 56.5

Oxygen

O₂ (g) 0 0 205.0

H₂O (I) -285.83 -237.13 69.91

Phosphorus

P₂ (g) 144.3 103.7 218.1

PCl₃ (g) -288.1 -269.6 311.7

POCl₃ (g) -542.2 -502.5 325

Sulfur

S (s, rhombic) 0 0 31.88

SO₂(g) -269.9 -300.4 248.5

SO₃(g) -395.2 -370.4 256.2

The value of ΔG° at 373 K for the oxidation of solid elemental sulfur to gaseous sulfur trioxide,

2S (s, rhombic) +
$$3O_2$$
 (g) \rightarrow 2SO₃ (g)

is _____ kJ/mol.

Student Response	Correct Answer
A740.8	
B61.3	
C. +740.8	
D. +61.3	
E728.3	

Phosphorous and chlorine gases combine to produce phosphorous trichloride:

$$P_2(g) + 3Cl_2(g) \rightarrow 2PCl_3(g)$$

 ΔG° at 298 $^{\circ}$ K for this reaction is -642.9 kJ/mol. The value of ΔG at 298 K for a reaction mixture that consists of 1.52 atm P2, 1.62 atm Cl2 and 0.65 atm is ______.

Student Response	Correct Answer
A44.2	
B708.4	
C. -3.88×10^3	
D649.5	
E7.28 × 10 ³	

9. chem10b 19.5-2

The value of ΔG° at 100.0 °C for the oxidation of solid elemental sulfur to gaseous sulfur dioxide,

$$S (s,rhombic) + O_2 (g) \rightarrow SO_2 (g)$$

is _____ kJ/mol. At 25.0 °C for this reaction, ΔH^o is -269.9 kJ/mol, ΔG^o is -300.4 kJ/mol and ΔS^o is +11.6 J/mol-K

Student Response	Correct Answer
A265.6	
B271.1	
C274.2	

D4,598	
E1,430	
chem10b 19.2-30	
Given the following table of thermodynamic data,	
delta H is positive delta S is positive	
complete the following sentence. The vaporization of PCI_3 (I) is	
Student Response	Correct Answe
A. spontaneous at low temperature and nonspontaneous at high temperature	
B. nonspontaneous at low temperature and spontaneous at high temperature	
C. nonspontaneous at all temperatures	
D. spontaneous at all temperatures	
E. not enough information given to draw a conclusion	
chem10b 19.2-5	
A reversible process is one that	
Charlent Beauches	Comment America
Student Response	Correct Answe
A. can be reversed with no net change in either system or surroundings	
B. must be carried out at high temperature	
C. is spontaneous in both directions	
D. happens spontaneously	
E. must be carried out at low temperature	
E. must be carried out at low temperature Score: 0/1	

(a) H₂O (I)

(b) O (g) (c) H₂ (g)

Student Response	Correct Answer
A. (a) only	
B. (b) only	
C. (c) only	
D. (b) and (c)	
E. (a), (b), and (c)	