For help with these problems www.tutor-homework.com Be sure to mention the filename: Chemistry_Questions_0097

www.tutor-homework.com (for tutoring, homework help, or help with online classes)

1. chem10b 17.2-5

Of the following solutions, which has the greatest buffering capacity?

	Student Response	Correct Answer
A.	0.821 M HF and 0.909 M NaF	
В.	0.821 M HF and 0.217 M NaF	
C.	They are all buffer solutions and would all have the same capacity.	
D.	0.121 M HF and 0.667 M NaF	
E.	0.100 M HF and 0.217 M NaF	

2. chem10b 17.1-13

A 25.0 mL sample of 0.723 M HClO₄ is titrated with a 0.273 M KOH solution. The H_3O^+ concentration after the addition of 66.2 mL of KOH is ______ M.

Student Response	Correct Answer
A. 0.723	
B. 0.273	
C. 0.439	
D. 2.81×10^{-13}	
E. 1.00×10^{-7}	

3. chem10b 17.5-9

A solution is prepared by dissolving 0.23 mol of chloroacetic acid and 0.27 mol of sodium chloroacetate in water sufficient to yield 1.00 L of solution. The addition of 0.05 mol of HCl to this buffer solution causes the pH to drop slightly. The pH does not decrease drastically because the HCl reacts with the ______ present in the buffer solution. The K_a of chloroacetic acid is 1.36×10^{-3} .

Student Response	Correct Answer
A. chloroacetate ion	
B. H ₃ O ⁺	
C. chloroacetic acid	
D. This is a <u>buffer</u> solution: the pH does not change upon addition of acid or base.	
E. H ₂ O	

A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba^{2+} . When the concentration of F⁻ exceeds ______ M, BaF_2 will precipitate. Neglect volume changes.

For BaF₂,

Student Response	Correct Answer
A. 1.2×10^{-4}	
B. 2.4×10^{-8}	
C. 1.1×10^{-2}	
D. 2.7×10^{-3}	
E. 5.9×10^{-5}	

5. chem10b 17.2-6

The addition of hydrofluoric acid and ______ to water produces a buffer solution.

	Student Response	Correct Answer
Α.	NaF	
в.	HCI	
C.	NaNO ₃	
D.	NaCl	
E.	NaBr	

Consider the following table of K_{sp} values.

Which compound listed below has the smallest molar solubility in water?

Student Response	Correct Answer
A. CdCO3	
B. Cd(OH) ₂	
C. AgI	
D. ZnCO ₃	
E. CaF ₂	

7. chem10b 17.2-11

The primary buffer system that controls the pH of the blood is the ______ buffer system.

Correct Answer

Student Response

- A. carbonic acid, carbon dioxide
- B. carbonic acid, bicarbonate
- C. carbon dioxide, carbonate
- D. carbonate, bicarbonate
- E. carbonate, carbonic acid

8. chem10b 17.5-16

A 25.0-mL sample of 0.150 M hydrazoic acid is titrated with a 0.150 M NaOH solution. What is the pH after 13.3 mL of base is added? The K_a of hydrazoic acid is 1.9×10^{-5} .

Student Response	Correct Answer
A. 1.34	

B. 4.78	
C. 4.66	
D. 4.45	
E. 3.03	

The pH of a solution prepared by dissolving 0.350 mol of solid methylamine hydrochloride

in of methylamine is _____. The K_b for methylamine is

	Student Response	Correct Answer
Α.	1.66	
в.	10.2	
C.	10.6	
D.	2.86	
E.	11.1	

10. chem10b 17.5-17

What is the molar solubility of magnesium carbonate ($MgCO_3$) in water? The solubility-product constant for $MgCO_3$ is 3.5 \times 10^{-8} at 25°C.

Student Response	Correct Answer
A. 2.6×10^{-4}	
B. 7.46	
C. 1.8×10^{-8}	
D. 7.0×10^{-8}	
E. 1.9×10^{-4}	

11. chem10b 17.1-22

Determine the K_{sp} for magnesium hydroxide (Mg(OH)_2) where the solubility of Mg(OH)_2 is 1.4 \times 10 $^{-4}$ M.

Student Response	Correct Answer
A. 2.7×10^{-12}	
B. 1.1×10^{-11}	
C. 3.9×10^{-8}	
D. 2.0×10^{-8}	
E. 1.4×10^{-4}	-

Which of the following could be added to a solution of sodium acetate to produce a buffer?

acetic acid hydrochloric acid potassium acetate sodium chloride

Student Response	Correct Answer
A. sodium chloride or potassium acetate	
B. potassium acetate only	
C. acetic acid or hydrochloric acid	
D. hydrochloric acid only	
E. acetic acid only	

13. chem10b 17.1-8

Calculate the pH of a solution prepared by dissolving 0.250 mol of benzoic acid ($C_7H_5O_2H$)

and of sodium benzoate $(NaC_7H_5O_2)$ in water sufficient to yield 1.00 L of solution. The K_a

of benzoic acid is

	Student Response	Correct Answer
Α.	4.41	
в.	4.19	
c.	2.39	
D.	3.97	
E.	10.0	

A solution is prepared by dissolving 0.23 mol of hydrazoic acid and 0.27 mol of sodium azide in water sufficient to yield 1.00 L of solution. The addition of 0.05 mol of NaOH to this buffer solution causes the pH to increase slightly. The pH does not increase drastically because the NaOH reacts with the ______ present in the buffer solution. The K_a of hydrazoic acid is 1.9×10^{-5} .

	Student Response	Correct Answer
Α.	H ₂ O	
в.	azide	
C.	This is a <u>buffer</u> solution: the pH does not change upon addition of acid or base.	
D.	hydrazoic acid	
E.	H ₃ O ⁺	

15. chem10b 17.5-11

How many milliliters of 0.0850 M NaOH are required to titrate 25.0 mL of to the equivalence point?

	Student Response	Correct Answer
Α.	3.92	
в.	29.5	
C.	0.153	
D.	21.2	
E.	0.245	

16. chem10b 17.2-20

Consider the following table of K_{sp} values.

Which compound listed below has the greatest molar solubility in water?

Student Response

A. AgI	
B. CaF ₂	
C. ZnCO ₃	
D. Cd(OH) ₂	
E. CdCO ₃	
Score: 1/1	

The pH of a solution that contains 0.818 M acetic acid ($K_a = 1.76 \times 10^{-5}$) and 0.172 M sodium acetate is _____.

	Student Response	(Correct Answer
A.	8.57		
в.	4.08		
C.	5.43		
D.	8.37		
E.	9.92		

18. chem10b 17.2-1

Which one of the following pairs cannot be mixed together to form a buffer solution?

Student Response	Correct Answer
A. H ₃ PO ₄ , KH ₂ PO ₄	
B. KOH, HF	
C. NH ₃ , NH ₄ Cl	
D. RbOH, HBr	
E. NaC ₂ H ₃ O ₂ , HCl (C ₂ H ₃ O ₂ ⁻ = acetate)	

19. chem10b 17.1-15

The pH of a solution prepared by mixing 50.0 mL of 0.125 M KOH and 50.0 mL of 0.125 M HCl is _____.

Student Response	Correct Answer
A. 6.29	
B. 7.00	
C. 0.00	
D. 5.78	
E. 8.11	

Calculate the maximum concentration (in M) of silver ions (Ag^+) in a solution that contains

of The K_{sp} of Ag_2CO_3 is

Student Response	Correct Answer
A. 8.1 \times 10 ⁻¹²	
B. 1.8×10^{-5}	
C. 3.2×10^{-10}	
D. 1.4×10^{-6}	
E. 2.8×10^{-6}	

1. chem10b 17.1-17

A 25.0 mL sample of an HCl solution is titrated with a 0.139 M NaOH solution. The equivalence point is reached with 15.4 mL of base. The concentration of HCl is ______ M.

Student Response	Correct Answer
A. 0.0856	
B. 0.267	
C. 11.7	
D. 0.139	
E. 0.00214	

A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba²⁺. When the concentration of F^- exceeds _____ M, BaF₂ will precipitate. Neglect volume changes. For BaF₂, 1.7x10⁻⁶.

	Student Response	Correct Answer
A.	2.7×10^{-3}	
в.	2.4×10^{-8}	
C.	1.2×10^{-4}	
D.	5.9×10^{-5}	
Ε.	1.1×10^{-2}	

5. chem10b 17.2-2

A solution containing which one of the following pairs of substances will be a buffer solution?

Student Response	Correct Answer
A. RbCl, HCl	
B. KBr, HBr	· · · · · · · · · · · · · · · · · · ·
C. CsF, HF	
D. NaI, HI	
E. none of the above	

6. chem10b 17.1-22

Determine the K_{sp} for magnesium hydroxide (Mg(OH)_2) where the solubility of Mg(OH)_2 is 1.4 \times 10 4 M.

	Student Response	Correct Answer
A.	1.1×10^{-11}	
в.	2.0×10^{-8}	
C.	3.9×10^{-8}	
D.	2.7×10^{-12}	

A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is ______.

Student Response	Correct Answer
A. a weak acid	
B. a strong base	
C. a weak base	
D. a strong acid	
E. neither an acid nor a base	

8. chem10b 17.2-11

The primary buffer system that controls the pH of the blood is the _____ buffer system.

Student Response	Correct Answer
A. carbonate, carbonic acid	
B. carbonic acid, carbon dioxide	
C. carbonic acid, bicarbonate	
D. carbonate, bicarbonate	
E. carbon dioxide, carbonate	

Which one of the following is not amphoteric?

Student Response	Correct Answer
A. AI(OH)₃	
B. Zn(OH) ₂	
C. Sn(OH) ₂	
D. Ca(OH) ₂	
E. Cr(OH) ₃	
Score: 1/1	

10. chem10b 17.5-13

A 25.0-mL sample of 0.150 M butanoic acid is titrated with a 0.150 M NaOH solution. What is the pH before any base is added? The K_a of butanoic acid is 1.5×10^{-5} .

	Student Response	Correct Answer
Α.	4.00	
в.	1.0×10^4	
C.	2.83	
D.	1.5×10^{-3}	
E.	4.82	

11. chem10b 17.1-6

Calculate the pH of a solution prepared by dissolving 0.370 mol of formic acid (HCO₂H) and 0.230 mol of sodium formate (NaCO₂H) in water sufficient to yield 1.00 L of solution. The K_a of formic acid is 1.77x10⁻⁴.

Student Response	Correct Answer
A. 3.54	
B. 2.30	
C. 3.95	
D. 10.46	
E. 2.09	

A 25.0 mL sample of 0.723 M HClO₄ is titrated with a 0.27 M KOH solution. The H_3O^+ concentration after the addition of 80.0 mL of KOH is _____ M.

Student Response	Correct Answer
A. 0.44	
B. 3.6×10^{-2}	
C. 0.72	
D. 1.0×10^{-7}	
E. 2.8×10^{-13}	

1. chem10b 17.1-1

The pH of a solution that contains 0.818 M acetic acid ($K_a = 1.76 \times 10^{-5}$) and 0.172 M sodium acetate is _____.

S	tudent Response	Correct Answer
A. 8	.57	
В. 9	.92	
C. 8	.37	
D. 5	.43	
E. 4	.08	

2. chem10b 17.1-3

Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of hydrogen fluoride after addition of 5.00 mL of 0.0100 M HCl to 25.0 mL of this solution is ______ M.

	Student Response	Correct Answer
4	A. 0.126	
E	3. 0.100	

c.	0.00976
D.	0.107
E.	0.00193

The solubility product of a compound is numerically equal to the product of the concentration of the ions involved in the equilibrium, each multiplied by its coefficient in the equilibrium reaction.

Student Response	Value	Correct Answer

4. chem10b 17.2-24

In which of the following aqueous solutions would you expect AgCl to have the highest solubility?

Student Response	Correct Answer
A. 0.020 KCI	
B. pure water	
C. 0.015 NaCl	
D. 0.020 AgNO ₃	
E. 0.020 M BaCl ₂	

5. chem10b 17.2-23

In which of the following aqueous solutions would you expect AgCl to have the lowest solubility?

Student Response	Correct Answer
A. 0.015 NaCl	
B. 0.020 AgNO ₃	
С. 0.020 КСІ	
D. 0.020 M BaCl ₂	

E. pure water

6. chem10b 17.4-1

The extent of ionization of a weak electrolyte is increased by adding to the solution a strong electrolyte that has an ion in common with the weak electrolyte.

Student Response	Value	Correct Answer

7. chem10b 17.5-18

What is the molar solubility of barium fluoride (BaF_2) in water? The solubility-product

constant for BaF_2 is 1.7 \times $10^{\text{-6}}$ at

Student Response	Correct Answer
A. 1.8×10^{-3}	
B. 1.2×10^{-2}	
C. 7.5×10^{-3}	
D. 6.5×10^{-4}	
E. 5.7×10^{-7}	

8. chem10b 17.5-16

A 25.0-mL sample of 0.150 M hydrazoic acid is titrated with a 0.150 M NaOH solution. What is the pH after 13.3 mL of base is added? The K_a of hydrazoic acid is 1.9×10^{-5} .

	Student Response	Correct Answer
Α.	1.34	
в.	4.78	
c.	4.45	
D.	3.03	
E.	4.66	

In which of the following aqueous solutions would you expect AgBr to have the lowest solubility?

Student Response	Correct Answer
A. 0.10 M AgNO ₃	
B. 0.10 M LiBr	
C. pure water	
D. 0.15 M KBr	
E. 0.20 M NaBr	

10. chem10b 17.2-1

Which one of the following pairs cannot be mixed together to form a buffer solution?

Student Response	Correct Answer
A. H ₃ PO ₄ , KH ₂ PO ₄	
B. NH ₃ , NH ₄ Cl	
C. RbOH, HBr	
D. NaC ₂ H ₃ O ₂ , HCl (C ₂ H ₃ O ₂ ⁻ = acetate)	
E. KOH, HF	

11. chem10b 17.1-2

Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of fluoride ions after the addition of 5.00 mL of 0.0100 M HCl to 25.0 mL of this solution is ______ M.

Student Response	Correct Answer
A. 0.00167	
B. 0.0817	
C. 0.00253	
D. 0.0980	
E. 0.0850	

In which of the following aqueous solutions would you expect AgBr to have the highest solubility?

Student Response	Correct Answer
А. 0.15 М КВг	
B. pure water	
C. 0.10 M LiBr	
D. 0.10 M AgNO ₃	
E. 0.20 M NaBr	

1. chem10b 17.5-1

Calculate the pH of a solution that is 0.295 M in sodium formate (NaHCO₂) and 0.205 M in formic acid HCO₂H. The K_a of formic acid is 1.77×10^{-4} .

	Student Response	Correct Answer
А.	4.963	
в.	10.10	
c.	13.84	
D.	3.903	
E.	3.587	

2. chem10b 17.2-34

Why does fluoride treatment render teeth more resistant to decay?

	Student Response	Correct Answer
Α.	Fluoride kills the bacteria in the mouth that make the acids that decay teeth.	
в.	Fluoride reduces saliva production, keeping teeth drier and thus reducing decay.	

- C. Fluoride stimulates production of tooth enamel to replace that lost to decay.
- D. Fluoride converts hydroxyapatite to fluoroapatite that is less reactive with acids.
- E. Fluoride dissolves plaque, reducing its decaying contact with teeth.

Which of the following could be added to a solution of acetic acid to prepare a buffer?

	Student Response	Correct Answ	er
А.	hydrochloric acid		
в.	more acetic acid		
C.	nitric acid		
D.	sodium hydroxide		
E.	None of the above can be added to an acetic acid solution to prepare a buffer.		

4. chem10b 17.2-4

The Henderson-Hasselbalch equation is _____.

Studen	t Response	Correct Answer
Α.		
pH = pk	ζ _a + log	
B. [H ⁺] =	K _a + (base/acid)	
C. pH = pH	<a (base="" +="" acid)<="" log="" th=""><td></td>	
D. pH = lo	g (base/acid)	
E. pH = pH	<a (base="" -="" acid)<="" log="" th=""><td></td>	

6. chem10b 17.1-4

The K_a of acetic acid is 1.76×10^{-5} . The pH of a buffer prepared by combining 50.0 mL of K KCH₃O₂ potassium acetate and 50.0 mL of 1.00 M acetic acid is _____.

Student Response	Correct Answer
A. 4.77	
B. 1.70	
C. 3.40	
D. 2.38	
E. 0.85	

A 25.0-mL sample of 0.150 M butanoic acid is titrated with a 0.150 M NaOH solution. What is the pH before any base is added? The K_a of butanoic acid is 1.5×10^{-5} .

	Student Response	Correct Answer
Α.	2.83	
в.	1.5×10^{-3}	
C.	4.82	
D.	4.00	
Ε.	1.0×10^{4}	

8. chem10b 17.4-3

The solubility product of a compound is numerically equal to the product of the concentration of the ions involved in the equilibrium, each multiplied by its coefficient in the equilibrium reaction.

Student Response	Value	Correct Answer

10. chem10b 17.5-14

A 25.0 mL sample of 0.150 M hypochlorous acid is titrated with a 0.150 M NaOH solution. What is the pH after 26.0 mL of base is added? The K_a of hypochlorous acid is 3.0×10^{-8} .

Student Response

A. 2.54	
B. 7.54	
C. 7.00	
D. 7.51	
E. 11.47	

The pH of a solution prepared by mixing 50.0 mL of 0.125 M KOH and 50.0 mL of 0.125 M HCl is _____.

	Student Response	Correct Answer
A.	0.00	
в.	7.00	
C.	6.29	
D.	5.78	
E.	8.11	

1. chem10b 17.2-32

Which below best describe(s) the behavior of an amphoteric hydroxide in water?

	Student Response	Correct Answer
Α.	With conc. aq. HCl, its suspension dissolves.	
в.	With conc. aq. NaOH, its clear solution forms a precipitate.	
C.	With conc. aq. HCl, its clear solution forms a precipitate.	
D.	With conc. aq. NaOH, its suspension dissolves.	
E.	With <u>both</u> conc. aq. NaOH <u>and</u> conc. aq. HCl, its suspension dissolves.	·

The addition of hydrofluoric acid and ______ to water produces a buffer solution.

Student Response	Correct Answer
A. HCI	
B. NaF	
C. NaNO ₃	
D. NaBr	
E. NaCl	

3. chem10b 17.1-23

Calculate the maximum concentration (in M) of silver ions (Ag⁺) in a solution that contains .025M of CO3^2- The K_{sp} of Ag₂CO₃ is 8.1×10^{-12} .

Student Response	Correct Answer
A. 1.8×10^{-5}	
B. 1.4×10^{-6}	
C. 8.1 × 10^{-12}	
D. 3.2×10^{-10}	
E. 2.8×10^{-6}	

4. chem10b 17.2-28

In which one of the following solutions is silver chloride the most soluble?

	Student Response	Correct Answer
А.	0.0176 M NH ₃	
в.	pure water	
C.	0.744 M LiNO ₃	
D.	0.181 M HCI	
E.	0.181 M NaCl	

Calculate the pH of a solution prepared by dissolving .150 mol of benzoic acid (HBz) and 0.300 mol of sodium benzoate in water sufficient to yield 1 L of solution. The K_a of benzoic acid is 6.5×10^{-5} .

	Student Response	Correct Answer
Α.	3.89	
в.	4.49	
C.	4.19	
D.	2.51	
E.	10.1	

6. chem10b 17.1-11

A 25.0 mL sample of 0.723 M $\rm HClO_4$ is titrated with a .273 M KOH solution. What is the (molarity) before any base is added?

Student Response	Correct Answer
A. 0.273	
B. 0.439	
C. 2.81×10^{-13}	
D. 1.00×10^{-7}	
E. 0.723	

7. chem10b 17.5-14

A 25.0 mL sample of 0.150 M hypochlorous acid is titrated with a 0.150 M NaOH solution. What is the pH after 26.0 mL of base is added? The K_a of hypochlorous acid is 3.0×10^{-8} .

	Student Response	Correct Answer
Α.	7.51	
в.	7.54	
C.	7.00	
D.	2.54	

E. 11.47

8. chem10b 17.2-1

Which one of the following pairs cannot be mixed together to form a buffer solution?

Student Response	Correct Answer
A. KOH, HF	
B. H ₃ PO ₄ , KH ₂ PO ₄	
C. NH ₃ , NH ₄ Cl	
D. RbOH, HBr	
E. NaC ₂ H ₃ O ₂ , HCl (C ₂ H ₃ O ₂ ⁻ = acetate)	

9. chem10b 17.1-17

A 25.0 mL sample of an HCl solution is titrated with a .139 M NaOH solution. The equivalence point is reached with 15.4 mL of base. The concentration of HCl is $____$ M.

	Student Response	Correct Answer
А.	11.7	
в.	0.0856	
C.	0.00214	
D.	0.139	
E.	0.267	

10. chem10b 17.5-3

Calculate the percent ionization of formic acid (HCO₂H) in a solution that is 0.219 M in formic acid. The K_a of formic acid is 1.77 × 10⁻⁴.

	Student Response	Correct Answer
A.	0.280	
В.	0.0180	
C.	2.87	

D. 12.2	·	
E. 3.94 × 10 ⁻⁵		

The common-ion effect refers to the observation ______.

	Student Response	Correct Answer
А.	that common ions precipitate all counter-ions	
В.	ions such as K^+ and Na^+ are common ions, so that their values in equilibrium constant expressions are always 1.00	
c.	that the selective precipitation of a metal ion, such as Ag^+ , is promoted by the addition of an appropriate counterion (X ⁻) that produces a compound (AgX) with a very low solubility	
D.	common ions, such as Na $^+$ (aq), don't affect equilibrium constants	
E.	that some ions, such as Na^+ (aq), frequently appear in solutions but do not participate in solubility equilibria	

12. chem10b 17.2-18

A solution of HF is titrated with a 0.150 M NaOH solution. Based on the table above, the best indicator for this reaction is _____. The K_a of hydrofluoric acid is 6.8 \times 10⁻⁴.

Student Response	Correct Answer
A. thymol blue	
B. bromocresol purple	
C. phenolpthalein	
D. methyl orange	
E. methyl red	