1.3. DOMAIN AND RANGE

Defining domain and range of relation
A relation R between the elements of a set X and the elements of a set Y is the set of pairs (x, y) where x is an element of X and y is an element of Y. The relations nay not include all pairs giving us a correspondence between some values of x and some values of y only. There are always two sets associated with a relation R :
(1) the set of values of the variable x which have a pair in the relation R;
(2) the set of values of the variable y which have a pair in the relation R. Below we give more precise definition.

1.3.1. DEFINITION.

Let R be a relation. Then R is a subset of the set of all pairs

$$
\{(x, y) \mid x \text { belongs } X \text { and } y \text { belongs to } Y\} \text {. }
$$

The domain of R is the set
$\{x \mid x$ belongs to X and there exists y in Y such that x is related to $y\}$.
The range of R is the set
$\{y \mid y$ belongs to Y and there exists x in X which is related to $y\}$.

1.3.2. EXAMPLE.

In the above figure the oval-shaped region represents a relation and we can see that the number 5 belongs to the domain of the relation because the vertical line passing through 5 in the x -axis intersects the region. The same is true for each number between 1 and 7 including 1 and 7 . So the domain is the closed interval $[1,7]$.

1.3.3. EXAMPLE.

In the above figure the oval-shaped region represents a relation and we can see that the number 5 belongs to the range of the relation because the horizontal line passing through 5 in the y -axis intersects the region. The same is true for each number between 2 and 6 including 2 and 6 . So the range is the closed interval $[2,6]$.

Finding domains and ranges of relations

1.3.4. EXERCISES.

1. Exercise. Find the domain and the range of the relation

$$
R=\{(2,5),(4,3),(6,1),(2,7)\}
$$

Go to answer 1
2. Exercise. Find the domain and the range of the relation by the equation $2 x+3 y=5$.

Go to answer 2
3. Exercise. Find the domain and the range of the relation by the equation $x y=1$.

Go to answer 3
4. Exercise. Find the domain and the range of the relation by the equation $y=x^{2}-3$.

Go to answer 4
5. Exercise. Find the domain and the range of the relation by the equation $y=\frac{x}{x-2}$.

Go to answer 5
6. Exercise. Find the domain and the range of the relation by the equation $y^{2}=x-3$.

Go to answer 6

1.3.7. ANSWERS.

1. Answer to Exercise 1. The domain of R is $2,4,6$ because the numbers $2,4,6$ appear as the first elements of the pairs in R. The range of R is $\{5,3,1,7\}$ because the numbers $5,3,1,7$ appear as the second elements of the pairs in R.
Go back 1
2. Answer to Exercise 2. The domain of R is the set of all real numbers. If x is a real number then solving the equation for y we see that x is related to $y=\frac{5}{3}-\frac{2 x}{3}$. For instance $x=2$ is related to $y=\frac{1}{3}$. The range of R is the set of all real numbers. If y is a real number then solving the equation for x we obtain that $x=\frac{5}{2}-\frac{3 y}{2}$ is related to y. For instance if $y=3$ then $x=-2$ is related to $y=3$.
Go back 2
3. Answer to Exercise 3. The domain and the range of R is the set of all real numbers except for the number 0 . We explain how to find the domain only. If $x=0$ then for every value of y we have $0 y=0$. It means that there is no value of y such that $0 y=1$. Thus the number 0 does not belong to the domain. If $x \neq 0$ then x is related to $y=\frac{1}{x}$.
Go back 3
4. Answer to Exercise 4. The domain of R is the set of all real numbers because for every value of x the number x is related to $y=x^{2}-3$. The range of R is the interval $[-3, x)$. If $x^{2} \geq 0$ then $x^{2}-3 \geq-3$ and $y \geq-3$. So we see that if $y<-3$ then there is no x such that $y=x^{2}-3$. It means that y does not belong to the range. If $y \geq-3$ then $y+3 \geq 0$ and the square root of $y+3$ is defined. So x equal to $\sqrt{y+3}$ is related to y.
Go back 4
5. Answer to Exercise 5. The domain is the set of all real numbers but, the number 2 because substitution $x=2$ leads to dividing by 0 . The range is the set of all real numbers but the number 1 because after solving the equation for x we obtain $x=\frac{2 y}{(y-1)}$ which is undefined for $y=1$.
Go back 5
6. Answer to Exercise 6. The domain is the interval [3, X) and the range is the set of all real numbers. Since for every value of y we have $y^{2} \geq 0$ the value of x needs to satisfy the inequality $x-3 \geq 0$ which gives $x \geq 3$.

Go back 6

