1.5. Transformations of graphs

Translating graphs vertically

Let c be a positive number.
Translation upward. The vertical translation c units upward shifts given point onto the point which is located in the same vertical line c units above the given point. Analytically, the vertical translation c units upward shifts a point (x, y) onto the point $(x, y+c)$, briefly

$$
(x, y) \mapsto(x, y+c)
$$

If the graph of a function $y=f(x)$ is translated vertically c units upward then each point $(x, f(x))$ is shifted onto the point $(x, f(x)+c)$ i.e.

$$
(x, f(x)) \mapsto(x, f(x)+c) .
$$

It means that the translated graph represents the function defined by the equation $y=f(x)+c$, schematically

$$
y=f(x) \mapsto y=f(x)+c
$$

Translation downward. The vertical translation c units downward shifts given point onto the point which is located in the same vertical line c units below the given point. Since all points located in the same vertical line have x-coordinates equal the vertical translations change only the y-coordinates of points. Analytically, the vertical translation c units downward shifts a point (x, y) onto the point $(x, y-c)$ i.e.

$$
(x, y) \mapsto(x, y-c)
$$

If the graph of a function $y=f(x)$ is translated vertically c units downward then each point $(x, f(x))$ is shifted onto the point $(x, f(x)-c)$ i.e.

$$
(x, f(x)) \mapsto(x, f(x)-c) .
$$

It means that the translated graph represents the function defined by the equation $y=f(x)-c$

$$
y=f(x) \mapsto y=f(x)-c
$$

1.5.1. EXAMPLE.

The figure above illustrates the vertical translation 2 units upward of the graph of the function $y=x^{2}$.

1.5.2. EXAMPLE.

The figure below illustrates the vertical translation 2 units downward of the graph of the function $y=x^{2}$.

Translating graphs horizontally

Let c be a positive number.
Translation to the left. The horizontal translation c units to the left shifts given point onto the point which is located in the same horizontal line c units to the left of the given point. The horizontal translation c units to the right shifts given point onto the point which is located in the same horizontal line c units to the right of the given point. Since all points located in the same horizontal line have y-coordinates equal horizontal translations change only the x-coordinates of points. Analytically, the horizontal translation c units to the left shifts a point (x, y) onto the point $(x-c, y)$

$$
(x, y) \mapsto(x-c, y)
$$

If the graph of a function $y=f(x)$ is translated horizontally c units to the left then each point $(x, f(x))$ is shifted onto the point $(x-c, f(x))$

$$
(x, f(x)) \mapsto(x-c, f(x))
$$

In order to find the equation of the function represented by the translated graph we need to analyze how the y-coordinate of the point $(x-c, f(x))$ is expressed in terms of the x-coordinate $x-c$. We let $\bar{x}=x-c$. Then $x=\bar{x}+c$ and $f(x)=f(\bar{x}+c)$. Hence the equation that we are looking for will have the form $y=f(\bar{x}+c)$. By renaming \bar{x} by x again we obtain $y=f(x+c)$.

Translation to the right. The horizontal translation c units to the right shifts a point (x, y) onto the point $(x+c, y)$. If the graph of a function $y=f(x)$ is translated horizontally c units to the right then each point $(x, f(x))$ is shifted onto the point $(x+c, f(x))$ with the x -coordinate equal to $x+c$. We have $(x+c, f(x))=(x+c, f((x+c)-c))$. In order to identify the function represented by the translated graph we need to analyze how the y-coordinate of the point $(x+c, f((x+c)-c))$ is expressed in terms of the x-coordinate $x+c$. Since the x-coordinate is $x+c$ and the y-coordinate is $f((x+c)-c))$ we see that in order to get the y-coordinate we need to apply the formula f not to the x-coordinate but to the x-coordinate decreased by c. It means that the translated graph represents the function defined by the equation $y=f(x-c)$.

1.5.3. EXAMPLE.

The figure above illustrates the horizontal translation c units to the left.

1.5.4. EXAMPLE.

The figure above illustrates the horizontal translation c units to the right.

Reflecting graphs in x-axis

The reflection in the x-axis maps given point onto the point which is located in the same vertical line on the opposite side of the x-axis but in the same distance from the x-axis as the given point. Since all points located in the same vertical line have x-coordinates equal the reflection in the x-axis changes only the y-coordinates of points. The reflection in the x-axis maps a point (x, y) onto the point $(x,-y)$. If the graph of a function $y=f(x)$ is reflected in the x-axis then each point $(x, f(x))$ is mapped onto the point $(x,-f(x))$ with the y-coordinate equal to $-f(x)$. It means that the reflected graph represents the function defined by the equation $y=-f(x)$.

1.5.5. EXAMPLE.

The figure above illustrates the reflection of the graph of the function $y=x^{2}$ in x-axis.

Reflecting graphs in y-axis

The reflection in the y-axis maps given point onto the point which is located in the same horizontal line on the opposite side of the y-axis but in the same distance from the y-axis as the given point. Since all points located in the same horizontal line have y-coordinates equal the reflection in the y-axis changes only the x-coordinates of points. The reflection in the y-axis maps a point (x, y) onto the point $(-x, y)$. If the graph of a function $y=f(x)$ is reflected in the x-axis then each point $(x, f(x))$ is mapped onto the point $(-x, f(x))$ with the y -coordinate equal to $f(x)=$ $f(-(-x))$. It means that the reflected graph represents the function defined by the equation $y=f(-x)$.

1.5.6. EXAMPLE.

The figure above illustrates the reflection of the graph of the function $y=x^{3}$.

Reflecting graphs in the diagonal line $y=x$
The reflection in the diagonal line $y=x$ maps the given point onto the point which is located in the same line perpendicular to $y=x$ on the opposite side of the line $y=x$ but in the same distance from the line $y=x$ as the given point (mirror image in the line $y=x$). The reflection in the line $y=x$ interchanges x and y. Thus it maps a point (x, y) onto the point (y, x). If $y=f(x)$ is the equation describing a graph then $x=f(y)$ is the equation describing the reflected graph.

1.5.7. EXAMPLE.

The figure above illustrates the reflection in the line $y=x$ of the graph of the function $y=x^{2}$. The obtained graph is not a function but it can be
described by the equation $x=y^{2}$.

Stretching and shrinking graphs

Translations and reflections do not change the basic shape of the original graph and are called rigid transformations. Obviously, stretching and shrinking cause a change in the shape of the original graph.

1.5.8. DEFINITION.

If $c>1$ is a number then the transformation which maps a point (x, y) onto the point $(x, c y)$ is called a vertical stretch. If $0<c<1$ is a number then the transformation which maps a point (x, y) onto the point $(x, c y)$ is called a vertical shrink.

The vertical stretch or shrink maps points $(x, f(x))$ onto points $(x, c f(x))$ and transforms the graph of a function $y=f(x)$ onto the graph of the function $y=c f(x)$.

1.5.9. EXAMPLE.

The figure above shows the graphs of the functions $y=x^{2}$ and $y=3 x^{2}$

1.5.10. EXAMPLE.

The figure above shows the graphs of the functions $y=x^{2}$ and $y=0.3 x^{2}$

