1.6. One-to-one functions

Defining one-to-one functions

A function relates each value of the independent variable x (input) to the single value of the dependent variable y (output). It is possible that two or more different inputs give us the same output. In order to understand it better let us consider the function $y=x^{3}-6 x^{2}+11 x-6$. By the simple substitution we see that the inputs $x=1, x=2$ and $x=3$ give us the same output $y=0$. In this case three values of x are related to one value of y (it seems to be three-to-one instead one-to-one). Functions for which the same output does not repeat for different inputs are called one-to-one.

1.6.1. DEFINITION.

A function $y=f(x)$ is called an one-to-one function if for each y from the range of f there exists exactly one x in the domain of f which is related to y.

1.6.2. EXAMPLE.

Let us compare the functions $\{(2,3),(4,5),(1,5),(3,4)\}$ and $\{(2,3),(4,2),(1,5),(3,4)\}$. The first function contains the pairs $(4,5)$ and $(1,5)$ which means that the inputs 4 and 1 give the same output 5 , so the first function is not one-to-one. There is no repetition of outputs of the second function which means that the function is one-to-one.

1.6.3. EXAMPLE.

Let us compare the functions $y=x^{2}$ and $y=3 x+1$. Since the first function repeats the output $y=4$ for the inputs $x=2$ and $x=-2\left(4=2^{2}\right.$ and $\left.4=(-2)^{2}\right)$, the function is not one-to-one. There is no repetition of outputs of the second function which means that the function is one-to-one.

The horizontal line test

A horizontal line consists of all points which have y-coordinates equal to the same number. The figure below shows the horizontal line consisting of all points having y-coordinate equal to 2 . This line could be described by the equation $y=2$ (in words the equations says that every value of x is related to 2.)

By the definition of an one-to-one function, at most one value of x is related to the given value of y. It follows, that a horizontal line can intersect the graph of a function at most once.

1.6.4. HORIZONTAL LINE TEST.

The graph of a function in a coordinate plane is the graph of an one-toone function if and only if no horizontal line intersects the graph at more than one point.

1.6.5. EXAMPLE.

The graph below represents a one-to-one function.

1.6.6. EXAMPLE.

The figure below shows the graph of the function $y=9-x^{2}$. We can see that the graph does not represent a one-to-one function because it has two intersections with the horizontal line $y=9$.

Identifying one-to-one functions algebraically

1.6.7. EXAMPLE.

We have checked that the function $f(x)=9-x^{2}$ in the Example 1.6.6 is not one-to-one by applying the Horizontal Line Test. Now, we will show how to do it algebraically. First, we need to change the functional notation into an equation in x and y. The substitution $y=f(x)$ give us $y=9-x^{2}$. Now, we solve the equation for the variable x.

$$
\begin{gathered}
y=9-x^{2} \\
0=9-x^{2}-y \\
x^{2}=9-y
\end{gathered}
$$

If $y<9$ then $9-y$ is positive and the equation above has two solution for $x, x=\sqrt{9-y}$ or $x=-\sqrt{9-y}$. For instance, for $y=5$ we obtain $x=2$ or $x=-2$. The inputs 2 and -2 give the same output 5 . It means that the function is not one-to-one.

1.6.8. EXERCISES.

1. Exercise. Which of the following functions is one-to-one?
A. $y=3$
B. $\{(2,3),(1,2),(5,2),(3,17)\}$
C. $y=|x|$
D. $\{(2,3),(1,2),(5,1),(3,17)\}$

Go to answer 1
2. Exercise. Which of the following graphs represents a one-to-one function?

Go to answer 2
3. Exercise. The function given by the equation $y=x^{2}-2 x+1$ is not a one-to-one function because
A. two is related to one so not one-to-one
B. there is one value of x related to two values of y
C. if $y=4$ then the equation $y=x^{2}-2 x+1$ has two solutions $x=-1$ and $x=3$
D. one input gives two different outputs

Go to answer 3

1.6.9. ANSWERS.

1. Answer to Exercise 1 is "D".

Go back 1
2. Answer to Exercise 2 is "D".

Go back 2
3. Answer to Exercise 3 is "C".

Go back 3

