2.1. Polynomial functions.

In an earlier course, you learned about *polynomials* and *functions*. In this lesson you will learn about *polynomial functions*.

2.1.1. DEFINITION.

A general polynomial function of x to the n^{th} degree is written: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$

where n is a non-negative integer and $a_n, a_{n-1}, \ldots, a_2, a_1$, and a_0 are real numbers.

2.1.2. EXAMPLE. $f(x) = -6x^4 + 3x^3 + 8x^2 - x + 9$

- The *exponents* are: 4 (where n = 4), 3 (where n-1 = 3), 2 and 1. All exponents are non-negative integers.
- The exponent of greatest value, n = 4, is called the degree of the polynomial.
- The *coefficients* are: $a_n = -6$, $a_{n-1} = 3$, $a_2 = 8$, $a_1 = -1$, and $a_0 = 9$.

The *leading coefficient* is $a_n = -6$ and the constant term is $a_0 = 9$.

2.1.3. EXAMPLE.

Examples of Polynomial and Non-Polynomial Functions

Polynomial Function	Non-Polynomial Functions
P(x) = 8	$g(x) = 4x^2 - 11x^{-1}$
f(x) = 3x	$f(x) = \frac{x^2 - 1}{3x}$
$g(x) = 2x^7 - 145x^3 + 53$	$f(\mathbf{x}) = \mathbf{x} $
$k(x) = x^4$	$f(x) = \sqrt{x^2 + 4}$

The notation used to represent a function is usually f(x) but other variables may be used.

Notice:

In the table above, functions have been named as f(x), g(x), P(x), h(x), or k(x). A polynomial function is often represented as P(x).

Degree	Polynomial functions	Classification
		Constant Function:
zero	function: f(x) = a polynomial: $f(x) = a_0$	 Has no x-variable; therefore, the degree is zero. Its graph is a horizontal line. Has no x-intercepts. Has a y-intercept of (0,a).
one	function form: f(x) = ax + b; where $a \neq 0$ polynomial form: $f(x) = a_1x + a_0$	 Linear Function: Its graph is a line with a slope of <i>a</i>. Has one x-intercept (-<i>b/a</i>,0). Has one y-intercept of (0,<i>b</i>).
		Quadratic Function:
two	function form: $f(x) = ax^{2} + bx + c$; where $a \neq 0$ polynomial form: $f(x) = a_{2}x^{2} + a_{1}x + a_{0}$	 Its graph is a parabola with vertex at (-b/2a, f(-b/2a)). Has two x-intercepts, if the values of x are real, \$\left(\frac{-b+\sqrt{b}^2-4ac}{2a}, 0\right)_{\text{and}}\left(\frac{-b-\sqrt{b}^2-4ac}{2a}, 0\right)\$ Has one y-intercept of (0,c).
three	function form: $f(x) = ax3 + bx2 + cx + d;$ where $a \neq 0$ polynomial form: f(x) = a3x3 + a2x2 + a1x + a0	 Cubic Function: Its graph is a cubic curve. You will learn to find or approximate the x-intercepts. Has one y-intercept (0, d).
		Polynomial Function:
nth degree	function form: $f(x) = axn + bxn-1 \dots + cx + d$; where $a \neq 0$ polynomial form: $f(x) = anxn + an-1xn-1 + \dots + a2x2 + a1x + a0$	is referred to as a polynomial of higher degree.Graph can be identified by its degree and its

Polynomial functions are classified according to their degree.