2.1. Polynomial functions.

In an earlier course, you learned about polynomials and functions. In this lesson you will learn about polynomial functions.

2.1.1. DEFINITION.

A general polynomial function of x to the $n^{\text {th }}$ degree is written:
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}$
where n is a non-negative integer and $a_{n}, a_{n-1}, \ldots a_{2}, a_{1}$, and a_{0} are real numbers.
2.1.2. EXAMPLE. $f(x)=-6 x^{4}+3 x^{3}+8 x^{2}-x+9$

- The exponents are: 4 (where $n=4$), 3 (where $n-1=3$), 2 and 1 . All exponents are non-negative integers.
- The exponent of greatest value, $n=4$, is called the degree of the polynomial.
- The coefficients are: $a_{n}=-6, a_{n-1}=3, a_{2}=8, a_{1}=-1$, and $a_{0}=9$.

The leading coefficient is $a_{n}=-6$ and the constant term is $a_{0}=9$.

2.1.3. EXAMPLE.

Examples of Polynomial and Non-Polynomial Functions

Polynomial Function	Non-Polynomial Functions
$P(x)=8$	$g(x)=4 x^{2}-11 x^{-1}$
$f(x)=3 x$	$f(x)=\frac{x^{2}-1}{3 x}$
$g(x)=2 x^{7}-145 x^{3}+53$	$f(x)=\|x\|$
$k(x)=x^{4}$	$f(x)=\sqrt{x^{2}+4}$

The notation used to represent a function is usually $f(x)$ but other variables may be used.
Notice:
In the table above, functions have been named as $f(x), g(x), P(x), h(x)$, or $k(x)$. A polynomial function is often represented as $P(x)$.

Polynomial functions are classified according to their degree.

Degree	Polynomial functions	Classification
zero	function: $f(x)=a$ polynomial: $f(x)=a_{0}$	Constant Function: - Has no x-variable; therefore, the degree is zero. - Its graph is a horizontal line. - Has no x-intercepts. - Has a y-intercept of $(0, a)$.
one	function form: $f(x)=a x+b$; where $a^{\neq 0} 0$ polynomial form: $f(x)=a_{1} x+a_{0}$	Linear Function: - Its graph is a line with a slope of a. - Has one x-intercept $(-b / a, 0)$. - Has one y-intercept of $(0, b)$.
two	function form: $f(x)=a x^{2}+b x+c$; where $a^{\neq} 0$ polynomial form: $f(x)=a_{2} x^{2}+a_{1} x+a_{0}$	Quadratic Function: - Its graph is a parabola with vertex at ($-b / 2 a, f(-$ $b / 2 a)$). - Has two x-intercepts, if the values of x are real, $\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, 0\right)_{\text {and }}\left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}, 0\right)$ - Has one y-intercept of $(0, c)$.
three	function form: $f(x)=a x 3+b x 2+c x+$ d; where $a^{\text {¹ }} 0$ polynomial form: $\begin{aligned} & f(x)=a 3 x 3+a 2 x 2+ \\ & a 1 x+a 0 \end{aligned}$	Cubic Function: - Its graph is a cubic curve. - You will learn to find or approximate the x intercepts. - Has one \mathbf{y}-intercept (0, d).
$\begin{aligned} & \text { nth } \\ & \text { degree } \end{aligned}$	function form: $\begin{aligned} & f(x)=a x n+\text { bxn }-1 \ldots+ \\ & c x+d ; \text { where } a^{\neq 0} 0 \end{aligned}$ polynomial form: $\begin{aligned} & f(x)=a n x n+a n-1 x n-1+ \\ & \ldots+a 2 x 2+a 1 x+a 0 \end{aligned}$	Polynomial Function: - Any other polynomial of degree greater than 3 is referred to as a polynomial of higher degree. - Graph can be identified by its degree and its leading coefficient. - The \mathbf{y}-intercept is $(\mathbf{0}, \mathrm{d})$.

