5.6. Solving linear systems using determinants

Determinants of 2×2 matrices

5.6.1. DEFINITION. The determinant of a matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is the number $a d-b c$. We write it

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

5.6.2. EXAMPLE.

To understand the above definition better let us describe the three steps to find the determinant of the matrix

$$
\left(\begin{array}{cc}
5 & 2 \\
7 & 11
\end{array}\right)
$$

Step 1. Find the product of the underlined entries on the first diagonal

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{5}{7} & 2 \\
7 & \underline{11}
\end{array}\right) \\
5 \cdot 11
\end{gathered}
$$

Step 2. Find the product of the underlined entries on the other diagonal

$$
\left(\begin{array}{cc}
5 & \underline{2} \\
\underline{7} & 11
\end{array}\right)
$$

$$
2 \cdot 7
$$

Step 3. Subtract the products

$$
5 \cdot 11-2 \cdot 7=55-14=41
$$

Thus

$$
\operatorname{det}\left(\begin{array}{cc}
5 & 2 \\
7 & 11
\end{array}\right)=41
$$

Cramer's Rule for systems in two variables

5.6.3. Cramer's Rule in two variables.

For the system of equations

$$
\begin{aligned}
& a x+b y=l \\
& c x+d y=m
\end{aligned}
$$

let

$$
D=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad D_{x}=\operatorname{det}\left(\begin{array}{cc}
\underline{l} & b \\
\underline{m} & d
\end{array}\right), \text { and } \quad D_{y}=\operatorname{det}\left(\begin{array}{ll}
a & \underline{l} \\
c & \underline{m}
\end{array}\right) .
$$

If $D \neq 0$, then the solution to the system is given by

$$
x=\frac{D_{x}}{D} \text { and } y=\frac{D_{y}}{D} .
$$

5.6.4. EXAMPLE.

Let us apply Cramer's Rule to solve the system

$$
\begin{aligned}
& 3 x-2 y=9 \\
& -x+3 y=3
\end{aligned}
$$

For this system the matrix of coefficients is

$$
\left(\begin{array}{cc}
3 & -2 \\
-1 & 3
\end{array}\right)
$$

Thus the determinant D of the matrix of coefficients is

$$
D=\operatorname{det}\left(\begin{array}{cc}
3 & -2 \\
-1 & 3
\end{array}\right)=3 \cdot 3-(-2) \cdot(-1)=7 .
$$

In the matrix of coefficients $\left(\begin{array}{cc}\underline{3} & -2 \\ \underline{-1} & 3\end{array}\right)$ the first column $\binom{3}{-1}$
is called the x-column because it consists of the coefficients in the front of the variable x. In order to calculate the determinant D_{x} we replace the x-column by the column of constants

$$
\binom{9}{3}
$$

which consists of the constant numbers which are on the right sides of the equations. It gives

$$
\left(\begin{array}{cc}
\underline{3} & -2 \\
\underline{-1} & 3
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
\underline{9} & -2 \\
\underline{3} & 3
\end{array}\right) .
$$

Then we calculate the determinant of the obtained matrix

$$
D_{x}=\operatorname{det}\left(\begin{array}{cc}
\underline{9} & -2 \\
\underline{3} & 3
\end{array}\right)=9 \cdot 3-(-2) \cdot 3=33 \text {. }
$$

The y-column of the matrix of coefficients $\left(\begin{array}{cc}3 & \frac{-2}{3} \\ -1 & \underline{3}\end{array}\right)$ is $\binom{-2}{3}$.

$$
\text { We replace it by the column of constants }\binom{9}{3} \text {. }
$$

It gives

$$
\left(\begin{array}{cc}
3 & \frac{-2}{3} \\
-1 & \underline{3}
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
3 & \underline{9} \\
-1 & \underline{3}
\end{array}\right) .
$$

Then we calculate the determinant

$$
\operatorname{det}\left(\begin{array}{cc}
3 & \underline{9} \\
-1 & \underline{3}
\end{array}\right)=3 \cdot 3-9 \cdot(-1)=18
$$

By Cramer's Rule

$$
x=\frac{D_{x}}{D}=\frac{33}{7} \text { and } y=\frac{D_{y}}{D}=\frac{18}{7} .
$$

Determinants of 3×3 matrices

5.6.5. DEFINITION.

For a 3×3 matrix

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

the determinant is defined as

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)= \\
a_{11} \cdot a_{22} \cdot a_{33}+a_{12} \cdot a_{23} \cdot a_{31}+a_{21} \cdot a_{32} \cdot a_{13}-a_{13} \cdot a_{22} \cdot a_{31}-a_{12} \cdot a_{21} \cdot a_{33}-a_{11} \cdot a_{23} \cdot a_{32}
\end{gathered}
$$

In the above definition the determinant of an 3×3 matrix is the sum of six terms. Three of the terms have + in the front and the three other - . Each term consists of the product of three entries from the given matrix. In the example below we give a convenient way of writing of the six terms which define the determinant.
5.6.6. EXAMPLE. We find the determinant of the matrix

$$
\left(\begin{array}{ccc}
-2 & -3 & -1 \\
-7 & 4 & 5 \\
0 & 6 & 1
\end{array}\right)
$$

We start with repeating twice the given matrix

$$
\left(\begin{array}{cccccc}
-2 & -3 & -1 & \frac{-2}{-3} & \frac{-3}{-1} & \frac{-1}{-5} \\
-7 & 4 & 5 & \frac{-7}{\underline{5}} & \underline{\underline{6}} \\
0 & 6 & 1 & \underline{1} & \underline{1} & \underline{1}
\end{array}\right) .
$$

The first diagonal of the matrix is

$$
\left(\begin{array}{ccc}
\frac{-2}{-7} & -3 & -1 \\
0 & \underline{4} & 5 \\
1
\end{array}\right)
$$

It has the entries $(-2,4,1)$ Then we form three lines parallel to the first diagonal of the given matrix

$$
\left(\begin{array}{cccccc}
\frac{-2}{-7} & \frac{-3}{4} & \frac{-1}{5} & -2 & -3 & -1 \\
0 & 6 & \underline{1} & \underline{-7} & 4 & 5 \\
\underline{6} & 1
\end{array}\right) .
$$

They have the entries $(-2,4,1),(-3,-7,0)$, and $(-1,-7,6)$, respectively. We form the first three products with the sign + in the front

$$
+(-2) \cdot 4 \cdot 1+(-3) \cdot(-7) \cdot 0+(-1) \cdot(-7) \cdot 6=34
$$

Now we repeat the same process for the other diagonal of the given matrix

$$
\left(\begin{array}{ccc}
-2 & -3 & \frac{-1}{5} \\
-7 & \underline{4} & 5 \\
\underline{0} & 6 & 1
\end{array}\right)
$$

which has the entries $(-1,4,0)$. Then we form three lines parallel to the second diagonal of the given matrix

$$
\left(\begin{array}{cccccc}
-2 & -3 & \frac{-1}{} & \frac{-2}{-7} & \frac{-3}{4} & -1 \\
-7 & \underline{4} & \underline{5} & \frac{-7}{0} & 6 & 1 \\
\underline{0} & \underline{6} & \underline{1} & 0 & 6
\end{array}\right) .
$$

They have entries $(-1,4,0) ;(-2,5,6),(-3,-7,1)$, respectively. We from the other three products with the sign - in the front

$$
-(-1) \cdot 4 \cdot 0-(-2) \cdot 5 \cdot 6-(-3) \cdot(-7) \cdot 1=39
$$

Finally, we find that

$$
\operatorname{det}\left(\begin{array}{ccc}
-2 & -3 & -1 \\
-7 & 4 & 5 \\
0 & 6 & 1
\end{array}\right)=34+39=73
$$

Cramer's Rule for systems in three variables
5.6.7. Cramer's Rule for three variables.

For the system of equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=L \\
& a_{2} x+b_{2} y+c_{2} z=K \\
& a_{3} x+b_{3} y+c_{3} z=M
\end{aligned}
$$

let

$$
\begin{gathered}
D=\operatorname{det}\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right), D_{x}=\operatorname{det}\left(\begin{array}{ccc}
L & b_{1} & c_{1} \\
K & b_{2} & c_{2} \\
M & b_{3} & c_{3}
\end{array}\right), \\
D_{y}=\operatorname{det}\left(\begin{array}{ccc}
a_{1} & L & c_{1} \\
a_{2} & K & c_{2} \\
a_{3} & M & c_{3}
\end{array}\right), \text { and } D_{z}=\operatorname{det}\left(\begin{array}{ccc}
a_{1} & b_{1} & L \\
a_{2} & b_{2} & K \\
a_{3} & b_{3} & M
\end{array}\right) .
\end{gathered}
$$

If $D \neq 0$, then the solution to the system is given by

$$
x=\frac{D_{x}}{D}, y=\frac{D_{y}}{D}, \text { and } z=\frac{D_{z}}{D} .
$$

5.6.8. EXAMPLE.

We will solve the system below using Cramer's Rule.

$$
\begin{gathered}
x+y+z=0 \\
2 x-y+z=-1 \\
-x+3 z-z=-8
\end{gathered}
$$

The matrix of coefficients is $\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 1 \\ -1 & 3 & -1\end{array}\right)$ and the column of constants is $\left(\begin{array}{c}0 \\ -1 \\ -8\end{array}\right)$.
We will evaluate the determinants D, D_{x}, D_{y}, D_{z}.
We start with the determinant of the matrix of coefficients

$$
D=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 1 \\
-1 & 3 & -1
\end{array}\right)=4
$$

Then we replace the x-column in the matrix of coefficients by the column of constants

$$
\left(\begin{array}{ccc}
\underline{1} & 1 & 1 \\
\underline{2} & -1 & 1 \\
\underline{-1} & 3 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
\underline{0} & 1 & 1 \\
\underline{-1} & -1 & 1 \\
\underline{-8} & 3 & -1
\end{array}\right)
$$

and calculate the determinant of the resulting matrix

$$
D_{x}=\operatorname{det}\left(\begin{array}{ccc}
\underline{0} & 1 & 1 \\
\underline{-1} & -1 & 1 \\
\underline{-8} & 3 & -1
\end{array}\right)=-20
$$

We replace the y-column in the matrix of coefficients by the column of constants

$$
\left(\begin{array}{ccc}
1 & \underline{1} & 1 \\
2 & \frac{-1}{3} & 1 \\
-1 & \underline{3} & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
1 & \underline{0} & 1 \\
2 & \underline{-1} & 1 \\
-1 & \underline{-8} & -1
\end{array}\right)
$$

and calculate the determinant of the resulting matrix

$$
D_{y}=\operatorname{det}\left(\begin{array}{ccc}
1 & \underline{0} & 1 \\
2 & \underline{-1} & 1 \\
-1 & \underline{-8} & -1
\end{array}\right)=-8
$$

Finally we replace the z-column in the matrix of coefficients by the column of constants

$$
\left(\begin{array}{ccc}
1 & 1 & \underline{1} \\
2 & -1 & \underline{1} \\
-1 & 3 & \underline{-1}
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
1 & 1 & \underline{0} \\
2 & -1 & \underline{-1} \\
-1 & 3 & \underline{-8}
\end{array}\right)
$$

and calculate the determinant of the resulting matrix

$$
D_{z}=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & \underline{0} \\
2 & -1 & \underline{-1} \\
-1 & 3 & \underline{\underline{-8}}
\end{array}\right)=28
$$

Now, by Cramer's Rule

$$
x=\frac{D_{x}}{D}=\frac{-20}{4}=-5, \quad y=\frac{D_{y}}{D}=\frac{-8}{4}=-2, \quad z=\frac{D_{z}}{D}=\frac{28}{4}=7 .
$$

The solution set to the system is $\{(-5,-2,7)\}$.

