6.1. Sequences

Sequences as functions

By \mathbf{N} we denote the set of all natural (counting) numbers i.e.

$$
\mathbf{N}=\{1,2,3, \ldots\} .
$$

If $y=f(x)$ is a function with the domain $(0, \infty)$, then the values $f(1), f(2), f(3), \ldots$ form a sequence.
6.1.1. EXAMPLE. For instance, let $f(x)=x^{2}+3$. Then

$$
f(1)=1^{2}+3=4, f(2)=2^{2}+3=7, f(3)=3^{2}+3=12, \ldots
$$

form a sequence. The first term of this sequence is 4 , the second is 7 , the third is 12 and so on. We can tell each term of the sequence. For instance the eleventh term is $11^{2}+3=124$ and the twenties element is $20^{2}+3=403$. In general, the term which is on the place numbered by n (i.e. nth term) is $n^{2}+3$.
6.1.2. DEFINITION. A sequence is a function whose domain is the set of all natural numbers $\{1,2,3, \ldots\}$.

Informally, we can think of a sequence of numbers as an ordered list of numbers.

Sequential notation

For the independent variable of a sequence, we usually use n. For the dependent variable $f(n)$, we generally write a_{n} and we read it "a sub n". So the sequence from the Example 6.1.1 is also defined by

$$
a_{n}=n^{2}+3 .
$$

6.1.3. EXAMPLE. The sequence of positive even integers $2,4,6, \ldots$ can be defined as

$$
a_{n}=2 n .
$$

6.1.4. EXAMPLE. The sequence of positive odd integers $1,3,5, \ldots$ is defined by

$$
a_{=} 2 n-1 .
$$

6.1.5. EXAMPLE. The sequence $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \ldots$ is defined by

$$
a_{n}=\frac{n+1}{n} .
$$

6.1.6. EXAMPLE. What is the fifth term of the sequence $1,8,27,64, \ldots$?

We need to determine the pattern between the terms.
First term is 1 which is the same as 1^{3}.
Second term is 8 which is the same as 2^{3}.
Third term is 27 which is the same as 3^{3}.
Fourth term is 64 which is the same as 4^{3}.
Hence, the fifth term is 125 because $5^{3}=125$.
6.1.7. EXAMPLE. What is the nth term of the sequence $0,3,8,15,24, \ldots$? For convenience, we will use the sequential notation. We have

$$
\begin{gathered}
a_{1}=0=1^{2}-1 \\
a_{2}=3=2^{2}-1 \\
a_{3}=8=3^{2}-1 \\
a_{4}=15=4^{2}-1 \\
a_{5}=24=5^{2}-1 .
\end{gathered}
$$

Hence the expression for the nth term is

$$
a_{n}=n^{2}-1 .
$$

Factorial notation

We need a notation for a product of consecutive integers because it occurs very often when we talk about sequences.
6.1.8. DEFINITION. For any positive integer n, the notation n ! (read as "n factorial") is defined by

$$
n!=n \cdot(n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1
$$

In addition we define

$$
0!=1
$$

From the definition we have

$$
n \cdot((n-1)!)=n!
$$

If $n=1$, then $1 \cdot(0!)=1!=1$. Hence $0!=1$.
6.1.9. EXAMPLE.

$$
\begin{gathered}
2!=2 \cdot 1=2 \\
3!=3 \cdot 2 \cdot 1=6 \\
4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 .
\end{gathered}
$$

6.1.10. EXAMPLE. What is the fifth term of the sequence

$$
a_{n}=\frac{n!}{(n-1)!} ?
$$

If $n=5$ then

$$
a_{5}=\frac{5!}{4!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{5}{1}=5 .
$$

