MODULE 6

LESSON 3

QUIZ

- 1. The first four terms of the geometric sequence with a first term of 64 and a common ratio of $\frac{1}{2}$ is ?
 - A. 64, 128, 256, 512
 - B. 64, 32, 16, 8
 - C. 64, 32, 8, 1
 - D. 64, 63, 62, 61

Go to answer 1

- 2. Find the n^{th} term of the geometric sequence with $a_1 = 16$, $a_4 = \frac{27}{4}$, and n = 3.
 - A. $\frac{3}{4}$
 - B. 64
 - C. $\frac{9}{16}$
 - D. 9

Go to answer 2

- 3. If the first term of a geometric sequence is -5 and the common ratio is -2, then find the fifth term.
 - A. 80
 - В. -80
 - C.~48
 - D. -48

- 4. If the first term of a geometric sequence is 3, the common ratio is 2, and the last term is 96, then find the number of terms.
 - A. 4
 B. 5
 C. 6
 D. 7

Go to answer 4

- 5. The sum of the indicated terms of the geometric sequence: 9, 27, 81, ... (to 6 terms) is ?
 - A. 13, 122
 - B. 729
 - C. 6561
 - D. 3276

Go to answer 5

- 6. The sum of the geometric sequence: $\frac{1}{18}, \frac{1}{4}, \frac{1}{2}, \dots$ (to 12 terms) is ?
 - A. $\frac{4095}{8}$ B. 512
 - C. $\frac{625}{8}$
 - D. 1345

- 7. If the first term of a geometric sequence is 27, the common ratio is $\frac{2}{3}$, and the last term is $\frac{16}{3}$, then find the sum of the terms.
 - A. $\frac{209}{3}$

B. $\frac{211}{3}$ C. $\frac{213}{3}$ D. $\frac{214}{3}$ Go to answer 7 8. Evaluate:

$$\sum 12(-\frac{1}{2})^{n-1}$$

A. 384

•

- B. $\frac{63}{8}$
- C. $\frac{23}{4}$
- D. 769

Go to answer 8

9. Find the sum of the infinite geometric sequence: $6 + 3 + \frac{3}{2} + \dots$

- A. 12
 B. 24
 C. 10
 D. 28
 Go to answer 9
- 10. Evaluate:

$$\sum 20(-\frac{1}{4})^{n-1}$$

A. 6

B. 10

- C. 16
- D. 24
- Go to answer 10
- 11. Change 0.2222... to a rational number.

A. $\frac{2}{9}$ B. $\frac{3}{8}$ C. $\frac{4}{9}$ D. $\frac{5}{8}$ Go to answer 11

12. Question.

А.

В.

- С.
- D.

Go to answer 12

13. Question.

- А.
- В.
- С.

D.

14. Question.

- А.
- В.
- С.
- D.

Go to answer $14\,$

15. Question.

- А.
- В.
- С.
- D.
- .

Go to answer 15

16. Question.

- А.
- В.
- С.
- D.

Go to answer 16

17. Question.

- А.
- В.

С.

D.

Go to answer 17

18. Question.

А.

В.

С.

D.

Go to answer 18

19. Question.

А.

В.

С.

D.

Go to answer 19

20. Question.

А.

В.

С.

D.

ANSWERS

1. Answer to Question 1 is "B".

 $a_1 = 64. \ a_2 = a_1 \cdot r = 64 \cdot \frac{1}{2} = 32. \ a_3 = a_2 \cdot r = 32 \cdot \frac{1}{2} = 16$, and $a_4 = a_3 \cdot r = 16 \cdot \frac{1}{2} = 8$ Go back 1

2. Answer to Question 2 is "D".

Go back 2

- Answer to Question 3 is "B".
 Go back 3
- 4. Answer to Question 4 is "C".
 - $a_1 = 3, r = 2, a_n = 96$ $a_n = a_1 r^{n-1}$ $96 = 3 \cdot 2^{n-1}$ $32 = 2^{n-1}$ $2^5 = 2^{n-1}$ n - 1 = 5 n = 6Go back 4
- 5. Answer to Question 5 is "D".

Go back 5

- 6. Answer to Question 6 is "A".Go back 6
- 7. Answer to Question 7 is "B".

$$a_{1} = 27, r = \frac{2}{3}, a_{n} = \frac{16}{3}$$

$$a_{n} = a_{1}r^{n-1}$$

$$\frac{2}{3} = 27(\frac{2}{3})^{n-1}$$

$$\frac{16}{81} = (\frac{2}{3})^{n-1}$$

$$(\frac{2}{3})^{4} = (\frac{2}{3})^{n-1}$$

$$n - 1 = 4$$

$$n = 5$$

$$S_{5} = \frac{27((\frac{2}{3})^{5} - 1)}{\frac{2}{3} - 1} = \frac{211}{3}$$
Go back 7

- Answer to Question 8 is "B".
 Go back 8
- Answer to Question 9 is "A".
 Go back 9
- 10. Answer to Question 10 is "C".Go back 10
- 11. Answer to Question 11 is "A".Go back 11

- 12. Answer to Question 12 is "".Go back 12
- 13. Answer to Question 13 is "B".Go back 13
- 14. Answer to Question 14 is "".Go back 14
- 15. Answer to Question 15 is "".Go back 15
- 16. Answer to Question 16 is "C".Go back 16
- 17. Answer to Question 17 is "".Go back 17
- 18. Answer to Question 18 is "".Go back 18
- 19. Answer to Question 19 is "".Go back 19
- 20. Answer to Question 20 is "".Go back 20