MATH 1314 - COLLEGE ALGEBRA
 Practice Final Exam

1. If the equation $x^{2}-y=7$ describes an one-to-one function find an equation of the inverse function.
A. Not an one-to-one function
B. $y=x+7$
C. $y=x^{2}+7$
D. $y=x^{2}-7$

Go to answer 1
2. Solve the equation

$$
2^{7-3 x}=\frac{1}{4}
$$

A. $\{-3\}$
B. $\left\{\frac{1}{2}\right\}$
C. $\{1\}$
D. $\{3\}$

Go to answer 2
3. Find the required annual interest rate, to the nearest tenth of a percent, for $\$ 13,696$ to grow to $\$ 19,026$ if interest is compounded semiannually for 10 years.
A. 1.7%
B. 5.0%
C. 3.3%
D. 6.6%

Go to answer 3
4. Convert $\log _{\sqrt{7}} 343=6$ to exponential form.
A. $7^{343}=3$
B. $3^{7}=343$
C. $7^{3}=343$
D. $343^{3}=7$

Go to answer 4
5. Solve the equation $\log _{x}\left(\frac{1}{25}\right)=-2$
A. $\{-5\}$
B. $\left\{-\frac{1}{5}\right\}$
C. $\left\{\frac{1}{5}\right\}$
D. $\{5\}$

Go to answer 5
6. Write the expression as a single logarithm with coefficient of 1 . Assume that all variables represent positive real numbers.

$$
2 \log _{4}(3 x-4)+4 \log _{4}(6 x-5)
$$

A. $\log _{4}\left((3 x-4)^{2}(6 x-5)^{4}\right)$
B. $8 \log _{4}(3 x-4)(6 x-5)$
C. $\log _{4} \frac{(3 x-4)^{2}}{(6 x-5)^{4}}$
D. $\log _{4}\left((3 x-4)^{2}+(6 x-5)^{4}\right)$

Go to answer 6
7. Solve the equation $P-P_{0}=\left(P_{1}-P_{0}\right) 10^{-k t}$ for the variable t
A. $t=\frac{P-P_{0}}{k\left(P_{1}-P_{0}\right)}$
B. $t=-\frac{1}{k} \log \frac{P-P_{0}}{P_{1}-P_{0}}$
C. $t=-\frac{1}{k} \log \frac{P}{P_{1}}$
D. $-\frac{1}{k} \log \left(P-P_{1}\right)$

Go to answer 7
8. Urn A has balls numbered 1 through 6 . Urn B has balls numbered 1 through 3. What is the probability that a 4 is drawn from A followed by a 2 from B ?
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{18}$
D. $\frac{1}{9}$

Go to answer 8
9. Suppose a family has 5 children. Also, suppose that the probability of having a girl is $\frac{1}{2}$. What is the probability of having at least four girls?
A. 0.1563
B. 0.3125
C. 0.1875
D. 0.0313

Go to answer 9
10. Find the sum for the geometric sequence $\sum_{i=1}^{5} 3(2)^{i}$
A. 22
B. 42
C. 186
D. 255

Go to answer 10
11. Write the 5 th term of the binomial expansion of $(3 x+3)^{5}$.
A. 1215
B. $1215 x$
C. $405 x$
D. $1215 x^{2}$

Go to answer 11
12. One digit from the number $5,212,442$ is written on each of seven cards. What is the probability of drawing a card that shows 5,2 , or 1 ?.
A. $\frac{2}{7}$
B. $\frac{4}{7}$
C. $\frac{5}{7}$
D. $\frac{3}{7}$

Go to answer 12
13. Solve the system

$$
\begin{aligned}
& x-y+z=2 \\
& x+y+z=10 \\
& x+y-z=6
\end{aligned}
$$

for the variable x.
A. $\{4\}$
B. \emptyset
C. $\{2\}$
D. $\{1\}$

Go to answer 13
14. Solve the system. If the system has infinite solutions give the dependent equations.

$$
\begin{aligned}
& 3 x+2 y+z=4 \\
& 2 x-3 y-z=5 \\
& 5 x+12 y+5 z=2
\end{aligned}
$$

A. $\{(t,-5 t+9,-13 t+22)\}$
B. $\{(t, 5 t-9,-13 t+22)\}$
C. $\{(t,-5 t-9,-13 t+22)\}$
D. $\{(t, 5 t+9,-13 t+22)\}$

Go to answer 14
15. Solve the equation

$$
\operatorname{det}\left(\begin{array}{lll}
x & 0 & 0 \\
6 & x & 1 \\
2 & 2 & 1
\end{array}\right)=-3
$$

A. $\{1\}$
B. $\{3\}$
C. $\{\emptyset\}$
D. $\{-1\}$

Go to answer 15

ANSWERS

1. Answer to Question 1 is " A ".

Go back 1
2. Answer to Question 2 is " D ". Go back 2
3. Answer to Question 3 is "C". Go back 3
4. Answer to Question 4 is "C". Go back 4
5. Answer to Question 5 is " D ". Go back 5
6. Answer to Question 6 is " C ". Go back 6
7. Answer to Question 7 is " B ". Go back 7
8. Answer to Question 8 is "C". Go back 8
9. Answer to Question 9 is " B ". Go back 9
10. Answer to Question 10 is "C". Go back 10
11. Answer to Question 11 is " B ". Go back 11
12. Answer to Question 12 is " C ". Go back 12
13. Answer to Question 13 is " A ". Go back 13
14. Answer to Question 14 is " B ". Go back 14
15. Answer to Question 15 is " C ".

Go back 15

